XB03ZD0682MMB [KYOCERA AVX]

Feed Through Capacitor, 1 Function(s), 50V,;
XB03ZD0682MMB
型号: XB03ZD0682MMB
厂家: KYOCERA AVX    KYOCERA AVX
描述:

Feed Through Capacitor, 1 Function(s), 50V,

文件: 总95页 (文件大小:1979K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
A KYOCERA GROUP COMPANY  
AVX  
SMPS Caps/High Voltage Caps  
Tip & Ring/Cap Arrays/Discoidals  
Advanced Applications  
Contents  
Introduction – Application Specific MLCs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3  
SMPS Capacitors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-7  
SM Style Stacked MLC Capacitors (US Preferred Sizes) . . . . . . . . . . . . . . . . . . . . . . . . . 8-28  
CH/CV Style (European Preferred Sizes) Vertical/Horizontal Mount . . . . . . . . . . . . . . . . 29-34  
RH Style (European Preferred Sizes) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35-36  
Assembly Guidelines (SM, CH, CV & RH Styles) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37-38  
SK Style . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39-40  
SE Style . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41-42  
CECC Offering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
High Voltage MLC Leaded . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
ESA Qualified SMPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44-49  
HV Style (US Preferred Sizes) DIP Lead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50-52  
CH/CV Style (European Preferred Sizes)  
Vertical/Horizontal Mount, DIP & Radial Lead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53-56  
SV Style Radial Lead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57-59  
MLC Chip Capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Basic Construction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61-64  
Surface Mounting Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65-68  
High Voltage MLC Chips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69-70  
Hi-Q® High RF Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71-75  
Tip & Ring Chips. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76-77  
MLC Chips, Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Single-In-Line Packages (SIP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79-80  
Discoidal MLC Feed-Through Capacitors and Filters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
DC Style (US Preferred Sizes) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82-84  
XB Style (European Preferred Sizes) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85-88  
XF Style (Feed-Through Discoidal). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85-88  
Filtered Arrays XD Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
CECC Ceramic Chips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
Baseline Management – BS9100 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
Advanced Application Specific Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
AVX Internet/FAX/CD Rom/Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
1
Application Specific MLCs  
Problem Solving at the Leading Edge  
As the worlds leading manufacturer and innovator in  
application specific multilayer ceramic (ASMLC) capacitors,  
AVX offers a unique technological and production capability  
to the field. AVX actively pursues and satisfies the high  
reliability and custom needs of a variety of governmental  
and industrial customers. Successful involvement in  
missile programs, extensive work in ultra-high reliability  
telecommunications and sophisticated capacitor design  
applications – all have established AVX as the source for  
advanced and high reliability ASMLC capacitors. Advanced  
Products are ISO9001 certified organizations for design  
and manufacturing of MLC capacitors.  
AVX Advanced Application Capacitors are organized around  
three distinct functions:  
• Application Specific Development Laboratories  
• Advanced Manufacturing Facilities  
• Quality Control  
For designs or applications not listed please consult Advanced Products.  
Olean, NY, USA - 716-372-6611  
Coleraine, Northern Ireland - ++44(0) 28703 44188  
St. Appollinaire, France - ++33(0) 38071 7400  
International Space Station  
Defense / Military  
Telecommunications  
Undersea Cable Repeater  
2
Application Specific MLCs  
Problem Solving at the Leading Edge  
requirements. This includes special lead configurations and  
APPLICATION SPECIFIC  
multiple chip packaging that simplifies the mounting of  
specialty capacitors. To the customer, the total capability of  
AVX assures a high level of consistent control at all steps of  
production.  
DEVELOPMENT LABORATORIES  
Initially, AVX technical personnel communicate with customers  
to learn the requirements that the new capacitor must satisfy.  
The personnel involved are well-versed in material, manufac-  
turing and electronic application technologies. They study the  
overall application and the environment in which the part will  
function. Programs are begun for selection of appropriate  
ceramic formulations, metal systems and designs. These  
programs yield a detailed technology profile from which  
mechanical design and process specifications follow.  
QUALITY CONTROL  
The Q. A. organization is an integral part of manufacturing.  
Quality Control tests the product of each manufacturing  
process, detects flaws or variations from the narrow  
acceptable standard and isolates the cause of the deviation.  
Corrective action can then be taken to return the process to  
within its predetermined control levels.  
ADVANCED  
MANUFACTURING FACILITIES  
Quality Assurance has large and well-equipped laboratories  
where statistical samples are evaluated and tested to  
determine failure rates, characterize products and assure  
compliance with specification. Both destructive and non-  
destructive testing are used, including advanced ultrasonic  
inspection equipment for non-destructive inspection of an  
entire production quantity.  
The ability and reputation of AVX in high reliability MLCs is due  
in part to the companys complete control over all phases of  
the production process. This includes powder processing,  
tape casting and/or wet build-up, green MLC assembly and  
final capacitor assembly/packaging. Recent renovations at  
AVX have upgraded green MLC assembly areas to certified  
clean room levels.  
Put the experience, technology and facilities of the leading  
company in multilayer ceramics to work for you. No other  
source offers the unique combination of capability and  
commitment to advanced application specific components.  
A favorite feature with many customers of AVX is our ability  
to work with customers in solving special packaging  
3
SMPS Capacitors  
SMPS Capacitor Applications  
FOREWORD  
Output Filter Capacitor  
High speed switch mode power supplies place high  
demands on the capacitors used in the input or output filters  
of Resonant DC-DC or Pulse Modulated DC-DC converters.  
AVX Corporation has developed several multilayer ceramic  
(MLC) capacitor styles for these switcher applications. These  
capacitors have been extensively tested and characterized  
and found to have almost ideal performances to meet the  
stringent requirements of these applications.  
The output from the switching circuit of a Switcher consists  
of current on and off. From an elevated DC reference, this  
current is an AC ripple additive on the DC. In order to smooth  
this ripple effect, a filter circuit (usually inductive input) is built  
to allow a storage of energy to take place during the rising  
ripple portion and to allow a discharge of energy during the  
falling ripple portion.  
The ESR and ESL of the capacitor contribute to the net ripple  
effect. The output filter capacitor is chosen for ESR, and with  
previous types of capacitors, multiples were used in an  
attempt to lower the net ESR. The MLC offers ESRs well  
below the minimum allowable to lower noise levels, thus  
eliminating the need for multiple units.  
Input Filter Capacitor  
The Input Filter capacitor is required to perform two functions:  
To supply an unrestricted burst of current to the power supply  
switch circuitry and to not only do it without generating any  
noise, but to help suppress noise generated in the switch  
circuitry. It is, in effect, a very large decoupling capacitor. It  
must have very low ESL, capabilities for very high dv/dt, as  
well as di/dt and it must have a very low ESR to eliminate  
power loss.  
Other MLC Capacitors for  
SMPS Applications  
AVX also manufactures coupling, decoupling, resonant and  
snubber capacitors for SMPS applications. Contact AVX for  
Application Specific S.M.P.S. capacitor requirements.  
The distance from the primary DC source, as well as the type  
of capacitor used in this source (usually electrolytics),  
presents a very high inductance to the input of the Switcher.  
The MLC input capacitor, with its excellent ESL and ESR  
characteristics, is located physically close to the switch  
circuitry. Repetitive peak currents, inherent with the Switcher  
design, require a high ripple capability, as well as high surge  
capability for transients, both induced and conducted from  
other sources. MLCs have both these capabilities.  
Olean, NY, USA  
716-372-6611  
Coleraine, Northern Ireland  
St. Apollinaire, France  
++44(0) 28703 44188  
++33(0) 38071 7400  
4
SMPS Capacitors  
Capacitor Selection and Performance  
ASMLC CAPACITOR SELECTION  
SMPS Design Information (SM, CH, CV, RH and SK Styles)  
Absolute Maximum Capacitance ESL  
Assuming no ESR - Capacitive Induced Ripple  
Absolute Maximum Output Capacitance  
Assuming no ESL and no ESR  
2 MHz  
25  
25  
20  
15  
10  
5
DIP Leads  
1 MHz  
50 mV Noise  
Due to  
Capacitance  
SK Series  
20  
50 mV Noise  
Due to ESL  
15  
500 KHz  
250 KHz  
500 KHz  
10  
5
250 KHz  
1 MHz  
2 MHz  
0
0
0
5
10  
15  
20  
0
5
10  
Maximum Output Filter Capacitance  
F)  
15  
20  
Maximum Output Filter Capacitance ESL  
(nH)  
(
Absolute Maximum Capacitance ESR  
Assuming no ESL - Capacitive Induced Ripple  
25  
50 mV Noise  
Due to ESR  
20  
15  
10  
5
0
0
10  
20  
30  
40  
Maximum Output Filter Capacitance ESR  
(mOhm)  
ASMLC CAPACITOR PERFORMANCE  
Capacitance as Measured from dv/dt Slope  
200 mA/ns Current Pulse  
Measurement starts after Inductive Ring Decay  
16  
14  
12  
10  
8
AI Electrolytic  
15 F  
MLC SM02  
10 F  
Wet Ta  
10 F  
Solid Ta  
5.6  
F
6
4
MLC SM04  
4.7  
F
2
0
10-5  
10-6  
10-9  
10-7  
10-8  
Time (Seconds)  
5
SMPS Capacitors  
Capacitor Performance  
SpiCalci program will provide answers to most of the design  
engineers’ questions on critical parameters for their specific  
applications:  
AC Ripple Capability  
Due to the wide range of product offering in this catalog, the  
AC ripple capabilities for switch mode power supply capacitors  
and high voltage capacitors are provided in the form of IBM  
compatible software package called SpiCalci. It is available  
free from AVX and can be downloaded for free from AVX  
website: www.avx.com.  
• Equivalent Series Resistance  
- function of frequency and temperature  
• Equivalent Series Inductance  
- function of design  
• Self Resonant Frequency  
f = 1/ (2 x π  
L x C)  
• Thermal Characteristics  
- function of design  
• AC Ripple Capabilities  
- function of frequency, temperature and design  
Examples of Product Performance  
TYPICAL ESR -vs- Frequency  
FOR SM04 STYLE CAPACITORS  
MAXIMUM RMS CURRENT FOR 50 VDC, CH - X7R  
@ 100 KHz & 25C Ambient  
ASSUMING MAX. CAP. FOR SINGLE CHIP CONSTRUCTION  
4.7µF  
9µF  
1µF  
50  
10.000  
1.000  
0.100  
45  
40  
35  
30  
25  
20  
15  
10  
5
0.010  
0.001  
1.0  
10.0  
Frequency (kHz)  
100.0  
1000.0  
0
6.8  
8.7  
10.4  
16.5  
11.9  
29.9  
26.6  
28.8  
CH41 CH51 CH61 CH71 CH76 CH81 CH86 CH91  
STYLE  
EXAMPLE (CH ONLY)  
MAXIMUM RMS CURRENT FOR 50 WVDC, SM - X7R  
@ 100 KHz & 25C Ambient  
MAXIMUM RMS CURRENT FOR 25 WVDC, SK - Z5U  
@ 100 KHz & 25C Ambient  
ASSUMING MAX. CAP. FOR SINGLE CHIP CONSTRUCTION  
ASSUMING MAX. CAP. FOR EACH STYLE  
50  
45  
40  
35  
30  
25  
20  
12  
10  
8
6
4
2
0
1.7  
4.5  
6.2  
7.4  
7.7  
11.0  
6.7  
8.7  
SK10  
15  
10  
5
SK01 SK04 SK05 SK06 SK07 SK08 SK09  
STYLE  
EXAMPLE (SK ONLY)  
0
36.8  
SM01  
28.3  
SM02  
22.7  
SM03  
9.7  
SM04  
5.7  
SM05  
33.8  
SM06  
STYLE  
EXAMPLE (SM ONLY)  
6
SMPS Capacitors  
Application Information on SupraCap  
®
SUPRACAP® - LARGE CAPACITANCE VALUE MLCs  
High speed switch mode power supplies require extremely  
low equivalent series resistance (ESR) and equivalent series  
inductance (ESL) capacitors for input and output filtering.  
These requirements are beyond the practical limits of  
electrolytic capacitors, both aluminum and tantalums, but  
are readily met by multilayer ceramic (MLCs) capacitors  
(Figure 1).  
Output noise spikes are reduced by lowering the filter capac-  
itance self-inductance. The ripple current is a triangle wave  
form with constant di/dt except when it changes polarity,  
then the di/dt is very high. The noise voltage generated by  
the filter capacitor is  
VNoise = LCapacitor  
di/dt  
®
AVX SupraCap devices have inductance value less than 3nH.  
Theoretical SMPSs output filter capacitor values are in the  
range of 6-10 µF/amp at 40KHz and drop to less than  
1 µF/amp at 1MHz. Most electrolytic applications use 10 to  
100 times the theoretical value in order to obtain lower ESR  
from paralleling many capacitors. This is not necessary with  
Figure 2 compares a 5.6 µF MLC to a 5.6 µF tantalum which  
was specially designed for low ESR and ESL. When subjected  
to a di/dt of 200 mA/ns the tantalum shows an ESR of 165  
mand an ESL of 18nH versus the MLCs 4 mand 0.3 nH.  
These performance differences allow considerable reduction  
in size and weight of the filter capacitor.  
®
SupraCap MLC capacitors which inherently have ESRs  
in the range of milliohms. These extremely low values of  
ESR mean low ripple voltage and less self-heating of  
the capacitor.  
Additionally, MLCs are compatible with surface mount  
technology reflow and assembly techniques which is the  
desirable assembly for conversion frequencies exceeding  
1 MHz. Electrolytic capacitors (both aluminum and tantalum)  
are not compatible with normal vapor phase (VPS) or infrared  
(IR) reflow temperatures (205-215°C) due to electrolyte and  
ESR -vs- Frequency  
24 uFd Filter Capacitors  
Aluminum  
Electrolytic  
Ceramic  
MLC  
Low "ESR"  
Tantalum  
100,000  
10,000  
1,000  
®
structural problems. AVX SupraCap devices are supplied  
with lead frames for either thru-hole or surface mount  
assembly. The lead frames act as stress relief for differences  
in coefficients of expansion between the large ceramic chip  
(10 ppm/°C) and the PC boards.  
50nS  
TPOS-7  
50mV  
DSW 16  
0.100  
Ta  
0.010  
0.001  
0.1  
1.0  
10.0  
100.0  
1000.0 10000.0  
Frequency (KHz)  
MLC  
Figure 1  
VZR-0.2  
T=25.5nS  
50mV  
V=2.0mV  
CSW 1  
50nS  
Figure 2  
7
SMPS Stacked MLC Capacitors  
(SM Style) Technical Information on SMPS Capacitors  
ELECTRICAL SPECIFICATIONS  
U.S. Preferred Styles  
Temperature Coefficient  
Dielectric Withstanding Voltage 25°C (Flash Test)  
C0G: A Temperature Coefficient - 0 ±30 ppm/°C, -55° to +125°C  
X7R: C Temperature Coefficient - ±15%, -55° to +125°C  
Z5U: E Temperature Coefficient - +22, -56%, +10° to +85°C  
C0G and X7R: 250% rated voltage for 5 seconds with 50 mA max  
charging current. (500 Volt units @ 750 VDC)  
Z5U: 200% rated voltage for 5 seconds with 50 mA max charging  
current.  
Capacitance Test (MIL-STD-202 Method 305)  
C0G: 25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz  
X7R: 25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz  
Z5U: 25°C, 0.5 Vrms max (open circuit voltage) at 1KHz  
Life Test (1000 hrs)  
C0G and X7R: 200% rated voltage at +125°C. (500 Volt units @  
600 VDC)  
Z5U: 150% rated voltage at +85°C  
Dissipation Factor 25°C  
C0G: 0.15% Max @ 25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz  
X7R: 2.5% Max @ 25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz  
Z5U: 3.0% Max @ 25°C, 0.5 Vrms max (open circuit voltage) at 1KHz  
Moisture Resistance (MIL-STD-202 Method 106)  
C0G, X7R, Z5U: Ten cycles with no voltage applied.  
Thermal Shock (MIL-STD-202 Method 107, Condition A)  
Immersion Cycling (MIL-STD-202 Method104, Condition B)  
Insulation Resistance 25°C (MIL-STD-202 Method 302)  
C0G and X7R: 100K Mor 1000 MF, whichever is less.  
Z5U: 10K Mor 1000 MF, whichever is less.  
Resistance To Solder Heat (MIL-STD-202, Method 210,  
Condition B, for 20 seconds)  
Insulation Resistance 125°C (MIL-STD-202 Method 302)  
C0G and X7R: 10K Mor 100 MF, whichever is less.  
Z5U: 1K Mor 100 MF, whichever is less.  
Typical ESR (m)  
24 µF Performance  
Aluminum  
Electrolytic  
2,100  
Tantalum  
MLC  
ESR @ 50KHz  
ESR @ 100KHz  
ESR @ 500KHz  
ESR @ 1MHz  
ESR @ 5MHz  
ESR @ 10MHz  
140  
125  
105  
105  
140  
190  
1
1
2.5  
5
10  
14  
2,000  
1,600  
1,500  
1,200  
1,700  
HOW TO ORDER  
AVX Styles: SM-1, SM-2, SM-3, SM-4, SM-5, SM-6  
SM0  
1
7
C
106  
M
A
N
650  
AVX Style  
Size  
SM0 = Uncoated dimen-  
SM5 = Epoxy  
coated  
Size  
See  
Voltage  
50V = 5  
100V = 1  
200V = 2  
500V = 7  
Temperature Capacitance  
Capacitance  
Tolerance  
Test  
Level  
Termination  
N = Straight Lead  
Height  
Max  
Coefficient  
C0G = A  
X7R = C  
Code  
(2 significant C0G: J = ±5%  
digits + no.  
of zeros)  
A = Standard J = Leads formed Dimension “A”  
K = ±10% B = Hi-Rel in 120 = 0.120"  
M = ±20% L = Leads formed 240 = 0.240"  
sions  
chart  
*
Z5U = E  
10 pF = 100 X7R: K = ±10%  
out  
360 = 0.360"  
480 = 0.480"  
650 = 0.650"  
100 pF = 101  
M = ±20%  
1,000 pF = 102  
Z = +80, -20%  
22,000 pF = 223 Z5U: M = ±20%  
220,000 pF = 224  
1 µF = 105  
Z = +80, -20%  
P = GMV (+100, -0%)  
10 µF = 106  
100 µF = 107  
Note: Capacitors with X7R and Z5U dielectrics are not intended for applications  
across AC supply mains or AC line filtering with polarity reversal. Contact plant  
for recommendations.  
Hi-Rel screening for C0G and X7R only. Screening consists of 100% Group A  
*
(B Level), Subgroup 1 per MIL-PRF-49470.  
8
SMPS Stacked MLC Capacitors  
(SM Style) Surface Mount and Thru-Hole Styles (SM0, SM5) U.S. Preferred Styles  
CHIP SEPARATION  
0.254 (0.010) TYP.  
D
E
1.397 (0.055)  
0.254 (0.010)  
A
B
6.35  
(0.250) MIN.  
0.254 (0.010) TYP.  
0.508 (0.020) TYP.  
2.54 (0.100) TYP.  
C
2.54 (0.100) MAX.  
0.635 (0.025) MIN.  
“N” STYLE LEADS  
CHIP SEPARATION  
0.254 (0.010) TYP.  
D
E
0.254 (0.010) RAD. (TYP.)  
1.397 (0.055)  
0.254 (0.010)  
A
B
0.254 (0.010) TYP.  
1.905 (0.075)  
0.635 (0.025)  
TYP.  
1.778 (0.070)  
0.254 (0.010)  
0.508 (0.020) TYP.  
2.54 (0.100) TYP.  
C
2.54 (0.100) MAX.  
0.635 (0.025) MIN.  
“J” STYLE LEADS  
CHIP SEPARATION  
0.254 (0.010) TYP.  
D
E
0.254 (0.010) RAD. (TYP.)  
1.397 (0.055)  
0.254 (0.010)  
A
B
0.254 (0.010) TYP.  
1.905 (0.075)  
0.635 (0.025)  
TYP.  
1.778 (0.070)  
0.254 (0.010)  
0.508 (0.020) TYP.  
2.54 (0.100) TYP.  
C
2.54 (0.100) MAX.  
0.635 (0.025) MIN.  
“L” STYLE LEADS  
millimeters (inches)  
DIMENSIONS  
No. of Leads  
per side  
Style  
A (max.)  
B (max.)  
C ±.635 (±0.025)  
D ±.635 (±0.025)  
E (max.)  
SM-1  
SM-2  
SM-3  
SM-4  
SM-5  
SM-6  
11.4 (0.450)  
20.3 (0.800)  
11.4 (0.450)  
10.2 (0.400)  
6.35 (0.250)  
31.8 (1.250)  
52.1 (2.050)  
38.4 (1.510)  
26.7 (1.050)  
10.2 (0.400)  
6.35 (0.250)  
52.1 (2.050)  
12.7 (0.500)  
22.1 (0.870)  
12.7 (0.500)  
11.2 (0.440)  
7.62 (0.300)  
34.3 (1.350)  
20  
15  
10  
4
3
20  
For “N” Style Leads,  
“B” Dimension = “A”  
Dimension Plus 0.065".  
See page 10 for  
maximum “A”  
Dimension  
For “J” & “L” Leads,  
“B” Dimension = “A”  
Dimension Plus 0.080"  
Note: For SM5 add 0.127 (0.005) to max. and nominal dimensions A, B, D, & E  
9
SMPS Stacked MLC Capacitors  
(SM Style)  
U.S. Preferred Styles  
Max Capacitance (µF) Available Versus Style with Height (A) of 0.120" - 3.05mm  
SM01 _ _ _ _ _ _ AN120  
SM02 _ _ _ _ _ _ AN120  
SM03 _ _ _ _ _ _ AN120  
SM04 _ _ _ _ _ _ AN120  
SM05 _ _ _ _ _ _ AN120  
SM06 _ _ _ _ _ _ AN120  
AVX  
STYLE  
50V 100V 200V 500V 50V 100V 200V 500V 50V 100V 200V 500V 50V 100V 200V 500V 50V 100V 200V 500V 50V 100V 200V 500V  
1.0 .70 .40 .18 1.2 1.0 .60 .26 .47 .40 .20 .09 .16 .13 .07 .02 .05 .04 .02 .01 3.2 2.4 1.3 .50  
C0G  
27 12 7.0 2.6 41 18 11 4.0 18 6.0 3.6 1.3 7.5 1.8 1.1 .40 2.8 .68 .40 .16 80 40 24 9.4  
84 32 12 – – 110 46 34 – – 40 15 6.0 – – 12 4.6 3.0 – – 4.6 1.8 .72 – – 260 140 92 – –  
X7R  
Z5U  
Max Capacitance (µF) Available Versus Style with Height (A) of 0.240" - 6.10mm  
SM01 _ _ _ _ _ _ AN240  
SM02 _ _ _ _ _ _ AN240  
SM03 _ _ _ _ _ _ AN240  
SM04 _ _ _ _ _ _ AN240  
SM05 _ _ _ _ _ _ AN240  
SM06 _ _ _ _ _ _ AN240  
AVX  
STYLE  
50V 100V 200V 500V 50V 100V 200V 500V 50V 100V 200V 500V 50V 100V 200V 500V 50V 100V 200V 500V 50V 100V 200V 500V  
2.0 1.4 .80 .36 2.4 2.0 1.2 .52 1.0 .80 .40 .18 .32 .26 .14 .05 .10 .08 .05 .02 6.4 4.8 2.6 1.0  
C0G  
54 24 14 5.2 82 36 22 8.0 36 12 7.2 2.6 15 3.6 2.2 .80 5.6 1.3 .80 .32 160 80 48 18  
160 64 24 – – 230 92 68 – – 80 30 12 – – 24 9.2 6.0 – – 9.2 3.6 1.4 – – 520 280 180 – –  
X7R  
Z5U  
Max Capacitance (µF) Available Versus Style with Height (A) of 0.360" - 9.14mm  
SM01 _ _ _ _ _ _ AN360  
SM02 _ _ _ _ _ _ AN360  
SM03 _ _ _ _ _ _ AN360  
SM04 _ _ _ _ _ _ AN360  
SM05 _ _ _ _ _ _ AN360  
SM06 _ _ _ _ _ _ AN360  
AVX  
STYLE  
50V 100V 200V 500V 50V 100V 200V 500V 50V 100V 200V 500V 50V 100V 200V 500V 50V 100V 200V 500V 50V 100V 200V 500V  
3.0 2.1 1.2 .54 3.6 3.0 1.8 .78 1.5 1.2 .60 .27 .48 .39 .21 .07 .15 .12 .07 .03 9.6 7.2 3.9 1.5  
C0G  
82 36 21 7.8 120 54 33 12 54 18 10 3.9 22 5.4 3.3 1.2 8.2 2.0 1.2 .48 240 120 72 28  
250 96 36 – – 350 130 100 – – 120 45 18 – – 36 13 9.0 – – 13 5.4 2.1 – – 780 430 270 – –  
X7R  
Z5U  
Max Capacitance (µF) Available Versus Style with Height (A) of 0.480" - 12.2mm  
SM01 _ _ _ _ _ _ AN480  
SM02 _ _ _ _ _ _ AN480  
SM03 _ _ _ _ _ _ AN480  
SM04 _ _ _ _ _ _ AN480  
SM05 _ _ _ _ _ _ AN480  
SM06 _ _ _ _ _ _ AN480  
AVX  
STYLE  
50V 100V 200V 500V 50V 100V 200V 500V 50V 100V 200V 500V 50V 100V 200V 500V 50V 100V 200V 500V 50V 100V 200V 500V  
4.0 2.8 1.6 .72 4.8 4.0 2.2 1.0 2.0 1.6 .80 .36 .64 .52 .28 .10 .20 .16 .10 .04 12 9.6 5.2 2.0  
C0G  
110 48 28 10 160 72 44 16 72 24 14 5.2 30 7.2 4.4 1.6 10 2.7 1.6 .64 320 160 96 37  
330 120 48 – – 470 180 130 – – 160 60 24 – – 48 18 12 – – 18 7.2 2.8 – – 1000 570 360 – –  
X7R  
Z5U  
Max Capacitance (µF) Available Versus Style with Height (A) of 0.650" - 16.5mm  
SM01 _ _ _ _ _ _ AN650  
SM02 _ _ _ _ _ _ AN650  
SM03 _ _ _ _ _ _ AN650  
SM04 _ _ _ _ _ _ AN650  
SM05 _ _ _ _ _ _ AN650  
SM06 _ _ _ _ _ _ AN650  
AVX  
STYLE  
50V 100V 200V 500V 50V 100V 200V 500V 50V 100V 200V 500V 50V 100V 200V 500V 50V 100V 200V 500V 50V 100V 200V 500V  
5.0 3.5 2.0 .90 6.0 5.0 3.0 1.3 2.5 2.0 1.0 .45 .80 .65 .35 .12 .25 .20 .12 .05 16 12 6.5 2.5  
C0G  
130 60 35 13 200 90 55 20 90 30 18 6.5 36 9.0 5.5 2.0 12 3.4 2.0 .80 400 200 120 47  
420 160 60 – – 590 230 170 – – 200 75 30 – – 60 23 15 – – 23 9.0 3.6 – – 1300 720 460 – –  
X7R  
Z5U  
10  
SMPS Stacked MLC Capacitors  
(SM Style) SM Military Styles MIL-PRF-49470  
U.S. Preferred Styles  
drawing 87106 capacitors. MIL-PRF-49470 specification  
was created to produce a robust replacement for DSCC  
87106. MIL-PRF-49470 offers two product levels.  
AVX IS QUALIFIED TO MIL-PRF-49470/1  
AND MIL-PRF-49470/2  
The SMPS capacitors are designed for high current, high-  
power and high-temperature applications. These capacitors  
have very low ESR (Equivalent Series Resistance) and ESL  
(Equivalent Series Inductance). SMPS Series capacitors offer  
design and component engineers a proven technology  
specifically designed for programs requiring high reliability  
performance in harsh environments.  
Level “B” is the standard reliability. Level “T” is the high relia-  
bility suitable for space application.  
AVX is qualified to supply MIL-PRF-49470/1 parts. These are  
unencapsulated ceramic dielectric, switch mode power supply  
capacitors. AVX is also qualified to supply MIL-PRF-49470/2  
parts. These are encapsulated ceramic dielectric, switch  
mode power supply capacitors.  
MIL-PRF-49470 SMPS Series capacitors are primarily used  
in input/output filters of high-power and high-voltage power  
supplies as well as in bus filters and DC snubbers for high  
power inverters and other high-current applications. These  
capacitors are available with through-hole and surface  
mount leads. The operating temperature is -55°C to +125°C.  
PLEASE CONTACT THE DSCC WEBSITE  
[http://www.dscc.dla.mil/Programs/MilSpec/DocSearch.asp]  
for details on testing, electrical, mechanical and part number  
options.  
PLEASE CONTACT THE DSCC WEBSITE  
[http://www.dscc.dla.mil/Programs/QmlQpl/] for the latest  
QPL (Qualified Products List).  
The MIL-PRF-49470 capacitors are preferred over the DSCC  
HOW TO ORDER  
M49470  
R
01  
474  
K
C
N
Performance  
specification  
indicating  
Characteristic  
Performance  
specification  
sheet number  
01 – indicating  
MIL-PRF-49470/1  
Capacitance  
Capacitance  
Tolerance  
Rated Voltage  
Configuration  
(Lead Style)  
MIL-PRF-49470  
02 – indicating  
MIL-PRF-49470/2  
For “T” level parts, replace the “M” in the pin with “T” (for  
example M49470R01474KCN becomes T49470R01474KCN)  
MIL-PRF-49470 contains additional capacitors that are not  
available in 87106, such as additional lead configurations  
and lower profile parts.  
On the pages to follow is the general dimensional outline  
along with a cross reference from 87106 parts to MIL-PRF-  
49470 parts.  
11  
SMPS Stacked MLC Capacitors  
(SM Style) SM Military Styles MIL-PRF-49470/1  
MIL-PRF-49470/1  
U.S. Preferred Styles  
MIL-PRF-49470/1 - capacitor, fixed, ceramic dielectric, switch mode power supply (general purpose and temperature stable),  
standard reliability and high reliability unencapsulated, Style PS01.  
D
E
A
See  
B
1.397 ±0.254  
(0.055 ±0.010)  
Note 4  
See  
Note 4  
SEATING PLANE  
6.35 (0.250) MIN  
See Note 3  
See Note 6  
0.254 ±0.05  
(0.010 ±0.002)  
2.54 (0.100) MAX  
0.635 (0.025) MIN  
(See Note 5)  
6.35 (0.250)  
MIN  
0.508 ±0.050  
(0.020 ±0.002)  
C
2.54 (0.100) TYP  
LEAD STYLE N AND A  
E
E
0.254 (0.010)  
RAD (TYP)  
0.254 (0.010)  
RAD (TYP)  
L
L
1.27 (0.050) MIN  
C
1.27 (0.050) MIN  
C
LEAD STYLE J AND C  
CIRCUIT DIAGRAM  
LEAD STYLE L AND B  
DIMENSIONS:  
millimeters (inches)  
D
Number of  
Leads  
per side  
Case Code  
C ±0.635 (±0.025)  
E (max.)  
Min.  
Max.  
1
2
3
4
5
6
11.4 (0.450)  
20.3 (0.800)  
11.4 (0.450)  
10.2 (0.400)  
6.35 (0.250)  
31.8 (1.250)  
49.5 (1.950)  
36.8 (1.450)  
24.1 (0.950)  
8.89 (0.350)  
6.20 (0.224)  
49.5 (1.950)  
52.7 (2.075)  
40.0 (1.535)  
27.3 (1.075)  
10.8 (0.425)  
6.97 (0.275)  
52.7 (2.075)  
12.7 (0.500)  
22.1 (0.870)  
12.7 (0.500)  
11.2 (0.440)  
7.62 (0.300)  
34.3 (1.350)  
20  
15  
10  
4
3
20  
NOTES:  
1. Dimensions are in millimeters (inches)  
2. Unless otherwise specified, tolerances are 0.254 (±0.010).  
3. Lead frame configuration is shown as typical above the seating plane.  
4. See table I of MIL-PRF-49470/1 for specific maximum A dimension. For maximum B dimension, add 1.65 (0.065) to  
the appropriate A dimension. For all lead styles, the number of chips is determined by the capacitance and voltage  
rating.  
5. For case code 5, dimensions shall be 2.54 (0.100) maximum and 0.305 (0.012) minimum.  
6. Lead alignment within pin rows shall be within ±0.10 (0.005).  
12  
SMPS Stacked MLC Capacitors  
(SM Style) SM Military Styles MIL-PRF-49470/2  
MIL-PRF-49470/2  
U.S. Preferred Styles  
MIL-PRF-49470/2 - capacitor, fixed, ceramic dielectric, switch mode power supply (general purpose and temperature stable),  
standard reliability and high reliability encapsulated, Style PS02.  
D
E
A MAX  
See Note 3  
0.38 ±0.13  
(0.015 ±0.005)  
SEATING  
PLANE  
2.54 0.05  
(0.100 0.002)  
6.35 (0.250)  
MIN  
See Note 4  
0.50 ±0.05  
(0.020 ±0.002)  
4.45 (0.175) MAX  
1.02 (0.040) MIN  
C
2.54 (0.100) TYP  
LEAD STYLE N AND A  
E
E
2.54 (0.100)  
RAD (TYP)  
2.54 (0.100)  
RAD (TYP)  
1.27 (0.050) MIN  
L
L
1.27 (0.050) MIN  
C
C
LEAD STYLE J AND C  
CIRCUIT DIAGRAM  
LEAD STYLE L AND B  
DIMENSIONS:  
millimeters (inches)  
Number of Leads  
per side  
Case Code  
C ±0.635 (±0.025)  
D ±0.635 (±0.025)  
E (max)  
1
2
3
4
5
6
11.4 (0.450)  
20.3 (0.800)  
11.4 (0.450)  
10.2 (0.400)  
6.35 (0.250)  
31.8 (1.250)  
54.7 (2.155)  
41.0 (1.615)  
29.3 (1.155)  
12.3 (0.485)  
9.02 (0.355)  
54.7 (2.155)  
14.7 (0.580)  
24.1 (0.950)  
14.7 (0.580)  
12.3 (0.485)  
9.02 (0.355)  
36.3 (1.430)  
20  
15  
10  
4
3
20  
NOTES:  
1. Dimensions are in millimeters (inches)  
2. Unless otherwise specified, tolerances are 0.254 (±0.001).  
3. See table I of MIL-PRF-49470/2 for specific maximum A dimension. For  
all lead styles, the number of chips is determined by the capacitance and  
voltage rating.  
4. Lead alignment within pin rows shall be within ±0.10 (0.004).  
13  
SMPS Stacked MLC Capacitors  
(SM Style) SM Military Styles MIL-PRF-49470  
U.S. Preferred Styles  
CAP  
(µF)  
CASE VOLT  
CODE (VDC)  
CAP  
(µF)  
CASE VOLT  
TOL  
87106- MIL-PRF-49470 PIN AVX PART NUMBER  
TOL  
87106- MIL-PRF-49470 PIN AVX PART NUMBER  
CODE (VDC)  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
M49470X01105KAN SM055C105KHN120 1.0  
M49470X01105MAN SM055C105MHN120 1.0  
M49470X01125KAN SM055C125KHN120 1.2  
M49470X01125MAN SM055C125MHN120 1.2  
M49470X01155KAN SM055C155KHN240 1.5  
M49470X01155MAN SM055C155MHN240 1.5  
M49470X01185KAN SM055C185KHN240 1.8  
M49470X01185MAN SM055C185MHN240 1.8  
M49470X01225KAN SM055C225KHN240 2.2  
M49470X01225MAN SM055C225MHN240 2.2  
M49470X01275KAN SM055C275KHN360 2.7  
M49470X01275MAN SM055C275MHN360 2.7  
M49470X01335KAN SM055C335KHN360 3.3  
M49470X01335MAN SM055C335MHN360 3.3  
M49470X01395KAN SM055C395KHN480 3.9  
M49470X01395MAN SM055C395MHN480 3.9  
M49470X01475KAN SM055C475KHN480 4.7  
M49470X01475MAN SM055C475MHN480 4.7  
M49470X01475KAA SM045C475KHN240 4.7  
M49470X01475MAA SM045C475MHN240 4.7  
M49470X01565KAN SM055C565KHN650 5.6  
M49470X01565MAN SM055C565MHN650 5.6  
M49470X01565KAA SM045C565KHN240 5.6  
M49470X01565MAA SM045C565KHN240 5.6  
M49470X01825KAN SM045C825KHN360 8.2  
M49470X01825MAN SM045C825MHN360 8.2  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
4
4
5
5
4
4
4
4
4
4
4
4
4
4
3
3
3
3
3
3
3
3
3
3
3
3
3
3
2
2
1
1
2
2
1
1
2
2
1
1
2
2
2
2
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
M49470X01187KAN SM065C187KHN480 180  
M49470X01187MAN SM065C187MHN480 180  
M49470X01227KAN SM065C227KHN480 220  
M49470X01227MAN SM065C227MHN480 220  
M49470X01277KAN SM065C277KHN650 270  
M49470X01277MAN SM065C277MHN650 270  
M49470X01684KBN SM051C684KHN120 0.68 10ꢀ  
M49470X01684MBN SM051C684MHN120 0.68 20ꢀ  
M49470X01824KBN SM051C824KHN240 0.82 10ꢀ  
M49470X01824MBN SM051C824MHN240 0.82 20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
6
6
6
6
6
6
5
5
5
5
5
5
5
5
5
5
5
5
5
5
4
4
5
5
5
5
4
4
4
4
4
4
4
4
4
4
4
4
3
3
3
3
3
3
3
3
3
3
3
3
2
2
1
1
2
2
1
1
2
2
1
1
50  
50  
50  
50  
50  
50  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
M49470X01105KBN SM051C105KHN240 1.0  
M49470X01105MBN SM051C105MHN240 1.0  
M49470X01125KBN SM051C125KHN240 1.2  
M49470X01125MBN SM051C125MHN240 1.2  
M49470X01155KBN SM051C155KHN360 1.5  
M49470X01155MBN SM051C155MHN360 1.5  
M49470X01185KBN SM051C185KHN360 1.8  
M49470X01185MBN SM051C185MHN360 1.8  
M49470X01225KBN SM051C225KHN480 2.2  
M49470X01225MBN SM051C225MHN480 2.2  
M49470X01225KBA SM041C225KHN240 2.2  
M49470X01225MBA SM041C225MHN240 2.2  
M49470X01275KBN SM051C275KHN480 2.7  
M49470X01275MBN SM051C275MHN480 2.7  
M49470X01335KBN SM051C335KHN650 3.3  
M49470X01335MBN SM051C335MHN650 3.3  
M49470X01335KBA SM041C335KHN240 3.3  
M49470X01335MBA SM041C335MHN240 3.3  
M49470X01395KBN SM041C395KHN360 3.9  
M49470X01395MBN SM041C395MHN360 3.9  
M49470X01475KBN SM041C475KHN360 4.7  
M49470X01475MBN SM041C475MHN360 4.7  
M49470X01565KBN SM041C565KHN480 5.6  
M49470X01565MBN SM041C565MHN480 5.6  
M49470X01685KBN SM041C685KHN480 6.8  
M49470X01685MBN SM041C685MHN480 6.8  
M49470X01825KBN SM041C825KHN650 8.2  
M49470X01825MBN SM041C825MHN650 8.2  
M49470X01825KBA SM031C825KHN240 8.2  
M49470X01825MBA SM031C825MHN240 8.2  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
19  
20  
69  
70  
71  
72  
21  
22  
23  
24  
25  
26  
27  
28  
M49470X01106KAN SM045C106KHN480  
M49470X01106MAN SM045C106MHN480 10  
M49470X01126KAN SM045C126KHN480 12  
M49470X01126MAN SM045C126MHN480 12  
M49470X01156KAN SM045C156KHN650 15  
M49470X01156MAN SM045C156MHN650 15  
M49470X01156KAA SM035C156KHN240 15  
M49470X01156MAA SM035C156MHN240 15  
M49470X01186KAN SM035C186KHN240 18  
M49470X01186MAN SM035C186MHN240 18  
M49470X01226KAN SM035C226KHN360 22  
M49470X01226MAN SM035C226MHN360 22  
M49470X01276KAN SM035C276KHN360 27  
M49470X01276MAN SM035C276MHN360 27  
M49470X01336KAN SM035C336KHN360 33  
M49470X01336MAN SM035C336MHN360 33  
M49470X01396KAN SM035C396KHN480 39  
M49470X01396MAN SM035C396MHN480 39  
M49470X01476KAN SM035C476KHN650 47  
M49470X01476MAN SM035C476MHN650 47  
M49470X01476KAA SM025C476KHN240 47  
M49470X01476MAA SM025C476MHN240 47  
M49470X01686KAN SM015C686KHN480 68  
M49470X01686MAN SM015C686MHN480 68  
M49470X01686KAA SM025C686KHN360 68  
M49470X01686MAA SM025C686MHN360 68  
M49470X01826KAN SM015C826KHN480 82  
M49470X01826MAN SM015C826MHN480 82  
M49470X01826KAA SM025C826KHN360 82  
10  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
M49470X01126KBN SM031C126KHN240  
M49470X01126MBN SM031C126MHN240 12  
M49470X01156KBN SM031C156KHN360 15  
M49470X01156MBN SM031C156MHN360 15  
M49470X01186KBN SM031C186KHN360 18  
M49470X01186MBN SM031C186MHN360 18  
M49470X01226KBN SM031C226KHN480 22  
M49470X01226MBN SM031C226MHN480 22  
M49470X01276KBN SM031C276KHN650 27  
M49470X01276MBN SM031C276MHN650 27  
M49470X01276KBA SM021C276KHN240 27  
M49470X01276MBA SM021C276MHN240 27  
M49470X01336KBN SM011C336KHN360 33  
M49470X01336MBN SM011C336MHN360 33  
M49470X01336KBA SM021C336KHN240 33  
M49470X01336MBA SM021C336MHN240 33  
M49470X01396KBN SM011C396KHN480 39  
M49470X01396MBN SM011C396MHN480 39  
M49470X01396KBA SM021C396KHN360 39  
M49470X01396MBA SM021C396MHN360 39  
M49470X01476KBN SM011C476KHN480 47  
M49470X01476MBN SM011C476MHN480 47  
12  
41  
42  
43  
44  
93  
94  
M49470X01826MAA SM025C826MHN360 82  
M49470X01107KAN SM015C107KHN650 100  
M49470X01107MAN SM015C107MHN650 100  
M49470X01107KAA SM025C107KHN480 100  
M49470X01107MAA SM025C107MHN480 100  
M49470X01157KAN SM025C157KHN650 150  
M49470X01157MAN SM025C157MHN650 150  
45  
46  
95  
96  
47  
48  
97  
98  
14  
SMPS Stacked MLC Capacitors  
(SM Style) SM Military Styles MIL-PRF-49470  
U.S. Preferred Styles  
CAP  
(µF)  
47  
CASE VOLT  
CODE (VDC)  
CAP  
(µF)  
15  
CASE VOLT  
TOL  
87106- MIL-PRF-49470 PIN AVX PART NUMBER  
TOL  
87106- MIL-PRF-49470 PIN AVX PART NUMBER  
CODE (VDC)  
M49470X01476KBA SM021C476KHN360  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
2
2
1
1
2
2
2
2
6
6
6
6
6
6
6
6
5
5
5
5
5
5
5
5
5
5
4
4
5
5
4
4
5
5
4
4
4
4
4
4
4
4
4
4
4
4
3
3
3
3
3
3
3
3
3
3
3
3
3
3
2
2
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
149 M49470R01156KCN SM012C156KHN360  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
1
1
2
2
1
1
2
2
1
1
2
2
1
1
2
2
2
2
2
2
6
6
6
6
6
6
6
6
6
6
6
6
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
4
4
5
5
4
4
4
4
4
4
4
4
4
4
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
M49470X01476MBA SM021C476MHN360 47  
M49470X01566KBN SM011C566KHN650 56  
100 M49470X01566MBN SM011C566MHN650 56  
101 M49470X01686KBN SM021C686KHN480 68  
102 M49470X01686MBN SM021C686MHN480 68  
103 M49470X01826KBN SM021C826KHN650 82  
104 M49470X01826MBN SM021C826MHN650 82  
105 M49470X01107KBN SM061C107KHN360 100  
106 M49470X01107MBN SM061C107MHN360 100  
107 M49470X01127KBN SM061C127KHN360 120  
108 M49470X01127MBN SM061C127MHN360 120  
109 M49470X01157KBN SM061C157KHN480 150  
110 M49470X01157MBN SM061C157MHN480 150  
111 M49470X01187KBN SM061C187KHN650 180  
112 M49470X01187MBN SM061C187MHN650 180  
113 M49470R01474KCN SM052C474KHN240 0.47 10ꢀ  
114 M49470R01474MCN SM052C474MHN240 0.47 20ꢀ  
115 M49470R01564KCN SM052C564KHN240 0.56 10ꢀ  
116 M49470R01564MCN SM052C564MHN240 0.56 20ꢀ  
117 M49470R01684KCN SM052C684KHN360 0.68 10ꢀ  
118 M49470R01684MCN SM052C684MHN360 0.68 20ꢀ  
119 M49470R01824KCN SM052C824KHN360 0.82 10ꢀ  
120 M49470R01824MCN SM052C824MHN360 0.82 20ꢀ  
150 M49470R01156MCN SM012C156MHN360 15  
M49470R01156KCA SM022C156KHN240 15  
M49470R01156MCA SM022C156MHN240 15  
151 M49470R01186KCN SM012C186KHN480 18  
152 M49470R01186MCN SM012C186MHN480 18  
M49470R01186KCA SM022C186KHN360 18  
M49470R01186MCA SM022C186MHN360 18  
153 M49470R01226KCN SM012C226KHN650 22  
154 M49470R01226MCN SM012C226MHN650 22  
M49470R01226KCA SM022C226KHN360 22  
M49470R01226MCA SM022C226MHN360 22  
155 M49470R01276KCN SM012C276KHN650 27  
156 M49470R01276MCN SM012C276MHN650 27  
M49470R01276KCA SM022C276KHN480 27  
M49470R01276MCA SM022C276MHN480 27  
157 M49470R01336KCN SM022C336KHN480 33  
158 M49470R01336MCN SM022C336MHN480 33  
159 M49470R01396KCN SM022C396KHN650 39  
160 M49470R01396MCN SM022C396MHN650 39  
161 M49470R01476KCN SM062C476KHN240 47  
162 M49470R01476MCN SM062C476MHN240 47  
163 M49470R01566KCN SM062C566KHN360 56  
164 M49470R01566MCN SM062C566MHN360 56  
165 M49470R01686KCN SM062C686KHN360 68  
166 M49470R01686MCN SM062C686MHN360 68  
167 M49470R01826KCN SM062C826KHN480 82  
99  
121 M49470R01105KCN SM052C105KHN480 1.0  
122 M49470R01105MCN SM052C105MHN480 1.0  
M49470R01105KCA SM042C105KHN120 1.0  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
M49470R01105MCA SM042C105MHN120 1.0  
168 M49470R01826MCN SM062C826MHN480 82  
169 M49470R01107KCN SM062C107KHN650 100  
170 M49470R01107MCN SM062C107MHN650 100  
171 M49470R01127KCN SM062C127KHN650 120  
172 M49470R01127MCN SM062C127MHN650 120  
123 M49470R01125KCN SM052C125KHN480 1.2  
124 M49470R01125MCN SM052C125MHN480 1.2  
M49470R01125KCA SM042C125KHN240 1.2  
M49470R01125MCA SM042C125MHN240 1.2  
125 M49470R01155KCN SM052C155KHN650 1.5  
126 M49470R01155MCN SM052C155MHN650 1.5  
M49470R01155KCA SM042C155KHN240 1.5  
173 M49470Q01154KEN SM057C154KHN120 0.15 10ꢀ  
174 M49470Q01154MEN SM057C154MHN120 0.15 20ꢀ  
175 M49470Q01184KEN SM057C184KHN240 0.18 10ꢀ  
176 M49470Q01184MEN SM057C184MHN240 0.18 20ꢀ  
177 M49470Q01224KEN SM057C224KHN240 0.22 10ꢀ  
178 M49470Q01224MEN SM057C224MHN240 0.22 20ꢀ  
179 M49470Q01274KEN SM057C274KHN240 0.27 10ꢀ  
180 M49470Q01274MEN SM057C274MHN240 0.27 20ꢀ  
181 M49470Q01334KEN SM057C334KHN360 0.33 10ꢀ  
182 M49470Q01334MEN SM057C334MHN360 0.33 20ꢀ  
183 M49470Q01394KEN SM057C394KHN360 0.39 10ꢀ  
184 M49470Q01394MEN SM057C394MHN360 0.39 20ꢀ  
185 M49470Q01474KEN SM057C474KHN360 0.47 10ꢀ  
186 M49470Q01474MEN SM057C474MHN360 0.47 20ꢀ  
187 M49470Q01564KEN SM057C564KHN480 0.56 10ꢀ  
188 M49470Q01564MEN SM057C564MHN480 0.56 20ꢀ  
M49470Q01564KEA SM047C564KHN240 0.56 10ꢀ  
M49470R01155MCA SM042C155MHN240 1.5  
127 M49470R01185KCN SM042C185KHN360 1.8  
128 M49470R01185MCN SM042C185MHN360 1.8  
129 M49470R01225KCN SM042C225KHN360 2.2  
130 M49470R01225MCN SM042C225MHN360 2.2  
131 M49470R01275KCN SM042C275KHN480 2.7  
132 M49470R01275MCN SM042C275MHN480 2.7  
133 M49470R01335KCN SM042C335KHN480 3.3  
134 M49470R01335MCN SM042C335MHN480 3.3  
135 M49470R01395KCN SM042C395KHN650 3.9  
136 M49470R01395MCN SM042C395MHN650 3.9  
M49470R01395KCA SM032C395KHN240 3.9  
M49470R01395MCA SM032C395MHN240 3.9  
137 M49470R01475KCN SM032C475KHN240 4.7  
138 M49470R01475MCN SM032C475MHN240 4.7  
139 M49470R01565KCN SM032C565KHN240 5.6  
140 M49470R01565MCN SM032C565MHN240 5.6  
141 M49470R01685KCN SM032C685KHN360 6.8  
142 M49470R01685MCN SM032C685MHN360 6.8  
143 M49470R01825KCN SM032C825KHN360 8.2  
144 M49470R01825MCN SM032C825MHN360 8.2  
M49470Q01564MEA SM047C564MHN240 0.56 20ꢀ  
189 M49470Q01684KEN SM057C684KHN650 0.68 10ꢀ  
190 M49470Q01684MEN SM057C684MHN650 0.68 20ꢀ  
M49470Q01684KEA SM047C684KHN360 0.68 10ꢀ  
M49470Q01684MEA SM047C684MHN360 0.68 20ꢀ  
191 M49470Q01105KEN SM047C105KHN360 1.0  
192 M49470Q01105MEN SM047C105MHN360 1.0  
193 M49470Q01125KEN SM047C125KHN360 1.2  
194 M49470Q01125MEN SM047C125MHN360 1.2  
195 M49470Q01155KEN SM047C155KHN480 1.5  
196 M49470Q01155MEN SM047C155MHN480 1.5  
197 M49470Q01185KEN SM047C185KHN650 1.8  
198 M49470Q01185MEN SM047C185MHN650 1.8  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
145 M49470R01106KCN SM032C106KHN480  
146 M49470R01106MCN SM032C106MHN480 10  
147 M49470R01126KCN SM032C126KHN650 12  
148 M49470R01126MCN SM032C126MHN650 12  
M49470R01126KCA SM022C126KHN240 12  
M49470R01126MCA SM022C126MHN240 12  
10  
15  
SMPS Stacked MLC Capacitors  
(SM Style) SM Military Styles MIL-PRF-49470  
U.S. Preferred Styles  
CAP  
(µF)  
CASE VOLT  
CODE (VDC)  
CAP  
(µF)  
1.8  
CASE VOLT  
TOL  
87106- MIL-PRF-49470 PIN AVX PART NUMBER  
TOL  
87106- MIL-PRF-49470 PIN AVX PART NUMBER  
CODE (VDC)  
M49470Q01185KEA SM037C185KHN240 1.8  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
3
3
3
3
3
3
3
3
3
3
3
3
2
2
1
1
2
2
1
1
2
2
1
1
2
2
2
2
6
6
6
6
6
6
4
4
1
1
2
2
2
2
3
3
4
4
3
3
1
1
2
2
2
2
6
6
5
5
5
5
5
5
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
50  
50  
50  
50  
50  
50  
50  
50  
100  
100  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
50  
247 M49470X01185KAJ SM055C185KHJ240  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
10ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
5
5
5
5
5
5
5
5
5
5
5
5
4
4
5
5
4
4
4
4
4
4
4
4
4
4
4
4
3
3
3
3
3
3
3
3
3
3
3
3
3
3
2
2
1
1
2
2
1
1
2
2
1
1
2
2
1
1
2
2
2
2
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
M49470Q01185MEA SM037C185MHN240 1.8  
248 M49470X01185MAJ SM055C185MHJ240 1.8  
249 M49470X01225KAJ SM055C225KHJ240 2.2  
250 M49470X01225MAJ SM055C225MHJ240 2.2  
251 M49470X01275KAJ SM055C275KHJ360 2.7  
252 M49470X01275MAJ SM055C275MHJ360 2.7  
253 M49470X01335KAJ SM055C335KHJ360 3.3  
254 M49470X01335MAJ SM055C335MHJ360 3.3  
255 M49470X01395KAJ SM055C395KHJ480 3.9  
256 M49470X01395MAJ SM055C395MHJ480 3.9  
257 M49470X01475KAJ SM055C475KHJ480 4.7  
258 M49470X01475MAJ SM055C475MHJ480 4.7  
M49470X01475KAC SM045C475KHJ240 4.7  
M49470X01475MAC SM045C475MHJ240 4.7  
259 M49470X01565KAJ SM055C565KHJ650 5.6  
260 M49470X01565MAJ SM055C565MHJ650 5.6  
M49470X01565KAC SM045C565KHJ240 5.6  
M49470X01565MAC SM045C565MHJ240 5.6  
261 M49470X01685KAJ SM045C685KHJ360 6.8  
262 M49470X01685MAJ SM045C685MHJ360 6.8  
263 M49470X01825KAJ SM045C825KHJ360 8.2  
264 M49470X01825MAJ SM045C825MHJ360 8.2  
265 M49470X01106KAJ SM045C106KHJ480 10  
266 M49470X01106MAJ SM045C106MHJ480 10  
267 M49470X01126KAJ SM045C126KHJ480 12  
268 M49470X01126MAJ SM045C126MHJ480 12  
269 M49470X01156KAJ SM045C156KHJ650 15  
270 M49470X01156MAJ SM045C156MHJ650 15  
M49470X01156KAC SM035C156KHJ240 15  
M49470X01156MAC SM035C156MHJ240 15  
271 M49470X01186KAJ SM035C186KHJ240 18  
272 M49470X01186MAJ SM035C186MHJ240 18  
273 M49470X01226KAJ SM035C226KHJ360 22  
274 M49470X01226MAJ SM035C226MHJ360 22  
275 M49470X01276KAJ SM035C276KHJ360 27  
276 M49470X01276MAJ SM035C276MHJ360 27  
277 M49470X01336KAJ SM035C336KHJ360 33  
278 M49470X01336MAJ SM035C336MHJ360 33  
279 M49470X01396KAJ SM035C396KHJ480 39  
280 M49470X01396MAJ SM035C396MHJ480 39  
281 M49470X01476KAJ SM035C476KHJ650 47  
282 M49470X01476MAJ SM035C476MHJ650 47  
M49470X01476KAC SM025C476KHJ240 47  
M49470X01476MAC SM025C476MHJ240 47  
283 M49470X01566KAJ SM015C566KHJ360 56  
284 M49470X01566MAJ SM015C566MHJ360 56  
M49470X01566KAC SM025C566KHJ240 56  
M49470X01566MAC SM025C566MHJ240 56  
285 M49470X01686KAJ SM015C686KHJ480 68  
286 M49470X01686MAJ SM015C686MHJ480 68  
M49470X01686KAC SM025C686KHJ360 68  
M49470X01686MAC SM025C686MHJ360 68  
287 M49470X01826KAJ SM015C826KHJ480 82  
288 M49470X01826MAJ SM015C826MHJ480 82  
M49470X01826KAC SM025C826KHJ360 82  
199 M49470Q01275KEN SM037C275KHN360 2.7  
200 M49470Q01275MEN SM037C275MHN360 2.7  
201 M49470Q01335KEN SM037C335KHN360 3.3  
202 M49470Q01335MEN SM037C335MHN360 3.3  
203 M49470Q01395KEN SM037C395KHN360 3.9  
204 M49470Q01395MEN SM037C395MHN360 3.9  
205 M49470Q01475KEN SM037C475KHN480 4.7  
206 M49470Q01475MEN SM037C475MHN480 4.7  
207 M49470Q01565KEN SM037C565KHN650 5.6  
208 M49470Q01565MEN SM037C565MHN650 5.6  
M49470Q01565KEA SM027C565KHN240 5.6  
M49470Q01565MEA SM027C565MHN240 5.6  
209 M49470Q01825KEN SM017C825KHN480 8.2  
210 M49470Q01825MEN SM017C825MHN480 8.2  
M49470Q01825KEA SM027C825KHN360 8.2  
M49470Q01825MEA SM027C825MHN360 8.2  
211 M49470Q01106KEN SM017C106KHN480  
212 M49470Q01106MEN SM017C106MHN480 10  
M49470Q01106KEA SM027C106KHN360 10  
M49470Q01106MEA SM027C106MHN360 10  
213 M49470Q01126KEN SM017C126KHN650 12  
214 M49470Q01126MEN SM017C126MHN650 12  
M49470Q01126KEA SM027C126KHN480 12  
M49470Q01126MEA SM027C126MHN480 12  
215 M49470Q01186KEN SM027C186KHN650 18  
216 M49470Q01186MEN SM027C186MHN650 18  
217 M49470Q01276KEN SM067C276KHN360 27  
218 M49470Q01276MEN SM067C276MHN360 27  
219 M49470Q01336KEN SM067C336KHN480 33  
220 M49470Q01336MEN SM067C336MHN480 33  
221 M49470Q01396KEN SM067C396KHN650 39  
10  
222 M49470Q01396MEN SM067C396MHN650 39  
223 M49470X01685KAN SM045C685KHN360 6.8  
224 M49470X01685MAN SM045C685MHN360 6.8  
225 M49470X01566KAN SM015C566KHN360  
226 M49470X01566MAN SM015C566MHN360 56  
M49470X01566KAA SM025C566KHN240 56  
56  
M49470X01566MAA SM025C566MHN240 56  
227 M49470X01127KAN SM025C127KHN480 120  
228 M49470X01127MAN SM025C127MHN480 120  
229 M49470X01106KBN SM031C106KHN240  
10  
230 M49470X01106MBN SM031C106MHN240 10  
231 M49470Q01824KEN SM047C824KHN360 0.82 10ꢀ  
232 M49470Q01824MEN SM047C824MHN360 0.82 20ꢀ  
233 M49470Q01225KEN SM037C225KHN240 2.2  
234 M49470Q01225MEN SM037C225MHN240 2.2  
235 M49470Q01685KEN SM017C685KHN480 6.8  
236 M49470Q01685MEN SM017C685MHN480 6.8  
M49470Q01685KEA SM027C685KHN240 6.8  
M49470Q01685MEA SM027C685MHN240 6.8  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
237 M49470Q01156KEN SM027C156KHN650  
238 M49470Q01156MEN SM027C156MHN650 15  
239 M49470Q01226KEN SM067C226KHN360 22  
240 M49470Q01226MEN SM067C226MHN360 22  
241 M49470X01105KAJ SM055C105KHJ120 1.0  
242 M49470X01105MAJ SM055C105MHJ120 1.0  
243 M49470X01125KAJ SM055C125KHJ120 1.2  
244 M49470X01125MAJ SM055C125MHJ120 1.2  
245 M49470X01155KAJ SM055C155KHJ240 1.5  
246 M49470X01155MAJ SM055C155MHJ240 1.5  
15  
M49470X01826MAC SM025C826MHJ360 82  
289 M49470X01107KAJ SM015C107KHJ650 100  
290 M49470X01107MAJ SM015C107MHJ650 100  
M49470X01107KAC SM025C107KHJ480 100  
M49470X01107MAC SM025C107MHJ480 100  
291 M49470X01127KAJ SM025C127KHJ480 120  
292 M49470X01127MAJ SM025C127MHJ480 120  
50  
50  
50  
50  
50  
16  
SMPS Stacked MLC Capacitors  
(SM Style) SM Military Styles MIL-PRF-49470  
U.S. Preferred Styles  
CAP  
(µF)  
CASE VOLT  
CODE (VDC)  
CAP  
(µF)  
39  
CASE VOLT  
TOL  
87106- MIL-PRF-49470 PIN AVX PART NUMBER  
TOL  
87106- MIL-PRF-49470 PIN AVX PART NUMBER  
CODE (VDC)  
293 M49470X01157KAJ SM025C157KHJ650 150  
294 M49470X01157MAJ SM025C157MHJ650 150  
295 M49470X01187KAJ SM065C187KHJ480 180  
296 M49470X01187MAJ SM065C187MHJ480 180  
297 M49470X01227KAJ SM065C227KHJ480 220  
298 M49470X01227MAJ SM065C227MHJ480 220  
299 M49470X01277KAJ SM065C277KHJ650 270  
300 M49470X01277MAJ SM065C277MHJ650 270  
301 M49470X01684KBJ SM051C684KHJ120 0.68 10ꢀ  
302 M49470X01684MBJ SM051C684MHJ120 0.68 20ꢀ  
303 M49470X01824KBJ SM051C824KHJ240 0.82 10ꢀ  
304 M49470X01824MBJ SM051C824MHJ240 0.82 20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
2
2
6
6
6
6
6
6
5
5
5
5
5
5
5
5
5
5
5
5
5
5
4
4
5
5
5
5
4
4
4
4
4
4
4
4
4
4
4
4
3
3
3
3
3
3
3
3
3
3
3
3
3
3
2
2
1
1
2
2
1
1
50  
50  
50  
50  
50  
50  
50  
50  
M49470X01396KBC SM021C396KHJ360  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
2
2
1
1
2
2
1
1
2
2
2
2
6
6
6
6
6
6
6
6
5
5
5
5
5
5
5
5
5
5
4
4
5
5
4
4
5
5
4
4
4
4
4
4
4
4
4
4
4
4
3
3
3
3
3
3
3
3
3
3
3
3
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
M49470X01396MBC SM021C396MHJ360 39  
345 M49470X01476KBJ SM011C476KHJ480 47  
346 M49470X01476MBJ SM011C476MHJ480 47  
M49470X01476KBC SM021C476KHJ360 47  
M49470X01476MBC SM021C476MHJ360 47  
347 M49470X01566KBJ SM011C566KHJ650 56  
348 M49470X01566MBJ SM011C566MHJ650 56  
349 M49470X01686KBJ SM021C686KHJ480 68  
350 M49470X01686MBJ SM021C686MHJ480 68  
351 M49470X01826KBJ SM021C826KHJ650 82  
352 M49470X01826MBJ SM021C826MHJ650 82  
353 M49470X01107KBJ SM061C107KHJ360 100  
354 M49470X01107MBJ SM061C107MHJ360 100  
355 M49470X01127KBJ SM061C127KHJ360 120  
356 M49470X01127MBJ SM061C127MHJ360 120  
357 M49470X01157KBJ SM061C157KHJ480 150  
358 M49470X01157MBJ SM061C157MHJ480 150  
359 M49470X01187KBJ SM061C187KHJ650 180  
360 M49470X01187MBJ SM061C187MHJ650 180  
361 M49470R01474KCJ SM052C474KHJ240 0.47 10ꢀ  
362 M49470R01474MCJ SM052C474MHJ240 0.47 20ꢀ  
363 M49470R01564KCJ SM052C564KHJ240 0.56 10ꢀ  
364 M49470R01564MCJ SM052C564MHJ240 0.56 20ꢀ  
365 M49470R01684KCJ SM052C684KHJ360 0.68 10ꢀ  
366 M49470R01684MCJ SM052C684MHJ360 0.68 20ꢀ  
367 M49470R01824KCJ SM052C824KHJ360 0.82 10ꢀ  
368 M49470R01824MCJ SM052C824MHJ360 0.82 20ꢀ  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
305 M49470X01105KBJ SM051C105KHJ240  
306 M49470X01105MBJ SM051C105MHJ240 1.0  
307 M49470X01125KBJ SM051C125KHJ240 1.2  
308 M49470X01125MBJ SM051C125MHJ240 1.2  
309 M49470X01155KBJ SM051C155KHJ360 1.5  
310 M49470X01155MBJ SM051C155MHJ360 1.5  
311 M49470X01185KBJ SM051C185KHJ360 1.8  
312 M49470X01185MBJ SM051C185MHJ360 1.8  
313 M49470X01225KBJ SM051C225KHJ480 2.2  
314 M49470X01225MBJ SM051C225MHJ480 2.2  
M49470X01225KBC SM041C225KHJ240 2.2  
M49470X01225MBC SM041C225MHJ240 2.2  
315 M49470X01275KBJ SM051C275KHJ480 2.7  
316 M49470X01275MBJ SM051C275MHJ480 2.7  
317 M49470X01335KBJ SM051C335KHJ650 3.3  
318 M49470X01335MBJ SM051C335MHJ650 3.3  
M49470X01335KBC SM041C335KHJ240 3.3  
M49470X01335MBC SM041C335MHJ240 3.3  
319 M49470X01395KBJ SM041C395KHJ360 3.9  
320 M49470X01395MBJ SM041C395MHJ360 3.9  
321 M49470X01475KBJ SM041C475KHJ360 4.7  
322 M49470X01475MBJ SM041C475MHJ360 4.7  
323 M49470X01565KBJ SM041C565KHJ480 5.6  
324 M49470X01565MBJ SM041C565MHJ480 5.6  
325 M49470X01685KBJ SM041C685KHJ480 6.8  
326 M49470X01685MBJ SM041C685MHJ480 6.8  
327 M49470X01825KBJ SM041C825KHJ650 8.2  
328 M49470X01825MBJ SM041C825MHJ650 8.2  
M49470X01825KBC SM031C825KHJ240 8.2  
M49470X01825MBC SM031C825MHJ240 8.2  
329 M49470X01106KBJ SM031C106KHJ240 10  
330 M49470X01106MBJ SM031C106MHJ240 10  
331 M49470X01126KBJ SM031C126KHJ240 12  
332 M49470X01126MBJ SM031C126MHJ240 12  
333 M49470X01156KBJ SM031C156KHJ360 15  
334 M49470X01156MBJ SM031C156MHJ360 15  
335 M49470X01186KBJ SM031C186KHJ360 18  
336 M49470X01186MBJ SM031C186MHJ360 18  
337 M49470X01226KBJ SM031C226KHJ480 22  
338 M49470X01226MBJ SM031C226MHJ480 22  
339 M49470X01276KBJ SM031C276KHJ650 27  
340 M49470X01276MBJ SM031C276MHJ650 27  
M49470X01276KBC SM021C276KHJ240 27  
M49470X01276MBC SM021C276MHJ240 27  
341 M49470X01336KBJ SM011C336KHJ360 33  
342 M49470X01336MBJ SM011C336MHJ360 33  
M49470X01336KBC SM021C336KHJ240 33  
M49470X01336MBC SM021C336MHJ240 33  
343 M49470X01396KBJ SM011C396KHJ480 39  
344 M49470X01396MBJ SM011C396MHJ480 39  
1.0  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
369 M49470R01105KCJ SM052C105KHJ480  
370 M49470R01105MCJ SM052C105MHJ480 1.0  
M49470R01105KCC SM042C105KHJ120 1.0  
M49470R01105MCC SM042C105MHJ120 1.0  
371 M49470R01125KCJ SM052C125KHJ480 1.2  
372 M49470R01125MCJ SM052C125MHJ480 1.2  
M49470R01125KCC SM042C125KHJ240 1.2  
M49470R01125MCC SM042C125MHJ240 1.2  
373 M49470R01155KCJ SM052C155KHJ650 1.5  
374 M49470R01155MCJ SM052C155MHJ650 1.5  
M49470R01155KCC SM042C155KHJ230 1.5  
M49470R01155MCC SM042C155MHJ230 1.5  
375 M49470R01185KCJ SM042C185KHJ360 1.8  
376 M49470R01185MCJ SM042C185MHJ360 1.8  
377 M49470R01225KCJ SM042C225KHJ360 2.2  
378 M49470R01225MCJ SM042C225MHJ360 2.2  
379 M49470R01275KCJ SM042C275KHJ480 2.7  
380 M49470R01275MCJ SM042C275MHJ480 2.7  
381 M49470R01335KCJ SM042C335KHJ480 3.3  
382 M49470R01335MCJ SM042C335MHJ480 3.3  
383 M49470R01395KCJ SM042C395KHJ650 3.9  
384 M49470R01395MCJ SM042C395MHJ650 3.9  
M49470R01395KCC SM032C395KHJ240 3.9  
M49470R01395MCC SM032C395MHJ240 3.9  
385 M49470R01475KCJ SM032C475KHJ240 4.7  
386 M49470R01475MCJ SM032C475MHJ240 4.7  
387 M49470R01565KCJ SM032C565KHJ240 5.6  
388 M49470R01565MCJ SM032C565MHJ240 5.6  
389 M49470R01685KCJ SM032C685KHJ360 6.8  
390 M49470R01685MCJ SM032C685MHJ360 6.8  
391 M49470R01825KCJ SM032C825KHJ360 8.2  
392 M49470R01825MCJ SM032C825MHJ360 8.2  
393 M49470R01106KCJ SM032C106KHJ480 10  
394 M49470R01106MCJ SM032C106MHJ480 10  
1.0  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
17  
SMPS Stacked MLC Capacitors  
(SM Style) SM Military Styles MIL-PRF-49470  
U.S. Preferred Styles  
CAP  
(µF)  
12  
CASE VOLT  
CODE (VDC)  
CAP  
(µF)  
1.2  
CASE VOLT  
TOL  
87106- MIL-PRF-49470 PIN AVX PART NUMBER  
TOL  
87106- MIL-PRF-49470 PIN AVX PART NUMBER  
CODE (VDC)  
395 M49470R01126KCJ SM032C126KHJ650  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
3
3
2
2
1
1
2
2
1
1
2
2
1
1
2
2
1
1
2
2
2
2
2
2
6
6
6
6
6
6
6
6
6
6
6
6
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
4
4
5
5
4
4
4
4
4
4
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
443 M49470Q01125KEJ SM047C125KHJ360  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
10ꢀ  
20ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
10ꢀ  
20ꢀ  
4
4
4
4
4
4
3
3
3
3
3
3
3
3
3
3
3
3
3
3
2
2
1
1
2
2
1
1
2
2
1
1
2
2
1
1
2
2
2
2
2
2
6
6
6
6
6
6
6
6
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
396 M49470R01126MCJ SM032C126MHJ650 12  
M49470R01126KCC SM022C126KHJ240 12  
M49470R01126MCC SM022C126MHJ240 12  
397 M49470R01156KCJ SM012C156KHJ360 15  
398 M49470R01156MCJ SM012C156MHJ360 15  
M49470R01156KCC SM022C156KHJ240 15  
M49470R01156MCC SM022C156MHJ240 15  
399 M49470R01186KCJ SM012C186KHJ480 18  
400 M49470R01186MCJ SM012C186MHJ480 18  
M49470R01186KCC SM022C186KHJ360 18  
M49470R01186MCC SM022C186MHJ360 18  
401 M49470R01226KCJ SM012C226KHJ650 22  
402 M49470R01226MCJ SM012C226MHJ650 22  
M49470R01226KCC SM022C226KHJ360 22  
M49470R01226MCC SM022C226MHJ360 22  
403 M49470R01276KCJ SM012C276KHJ650 27  
404 M49470R01276MCJ SM012C276MHJ650 27  
M49470R01276KCC SM022C276KHJ480 27  
M49470R01276MCC SM022C276MHJ480 27  
405 M49470R01336KCJ SM022C336KHJ480 33  
406 M49470R01336MCJ SM022C336MHJ480 33  
407 M49470R01396KCJ SM022C396KHJ650 39  
408 M49470R01396MCJ SM022C396MHJ650 39  
409 M49470R01476KCJ SM062C476KHJ240 47  
410 M49470R01476MCJ SM062C476MHJ240 47  
411 M49470R01566KCJ SM062C566KHJ360 56  
412 M49470R01566MCJ SM062C566MHJ360 56  
413 M49470R01686KCJ SM062C686KHJ360 68  
414 M49470R01686MCJ SM062C686MHJ360 68  
415 M49470R01826KCJ SM062C826KHJ480 82  
444 M49470Q01125MEJ SM047C125MHJ360 1.2  
445 M49470Q01155KEJ SM047C155KHJ480 1.5  
446 M49470Q01155MEJ SM047C155MHJ480 1.5  
447 M49470Q01185KEJ SM047C185KHJ650 1.8  
448 M49470Q01185MEJ SM047C185MHJ650 1.8  
M49470Q01185KEC SM037C185KHJ240 1.8  
M49470Q01185MEC SM037C185MHJ240 1.8  
449 M49470Q01225KEJ SM037C225KHJ240 2.2  
450 M49470Q01225MEJ SM037C225MHJ240 2.2  
451 M49470Q01275KEJ SM037C275KHJ360 2.7  
452 M49470Q01275MEJ SM037C275MHJ360 2.7  
453 M49470Q01335KEJ SM037C335KHJ360 3.3  
454 M49470Q01335MEJ SM037C335MHJ360 3.3  
455 M49470Q01395KEJ SM037C395KHJ360 3.9  
456 M49470Q01395MEJ SM037C395MHJ360 3.9  
457 M49470Q01475KEJ SM037C475KHJ480 4.7  
458 M49470Q01475MEJ SM037C475MHJ480 4.7  
459 M49470Q01565KEJ SM037C565KHJ650 5.6  
460 M49470Q01565MEJ SM037C565MHJ650 5.6  
M49470Q01565KEC SM027C565KHJ240 5.6  
M49470Q01565MEC SM027C565MHJ240 5.6  
461 M49470Q01685KEJ SM017C685KHJ480 6.8  
462 M49470Q01685MEJ SM017C685MHJ480 6.8  
M49470Q01685KEC SM027C685KHJ240 6.8  
M49470Q01685MEC SM027C685MHJ240 6.8  
463 M49470Q01825KEJ SM017C825KHJ480 8.2  
464 M49470Q01825MEJ SM017C825MHJ480 8.2  
M49470Q01825KEC SM027C825KHJ360 8.2  
M49470Q01825MEC SM027C825MHJ360 8.2  
465 M49470Q01106KEJ SM017C106KHJ480 10  
466 M49470Q01106MEJ SM017C106MHJ480 10  
M49470Q01106KEC SM027C106KHJ360 10  
M49470Q01106MEC SM027C106MHJ360 10  
416 M49470R01826MCJ SM062C826MHJ480 82  
417 M49470R01107KCJ SM062C107KHJ650 100  
418 M49470R01107MCJ SM062C107MHJ650 100  
419 M49470R01127KCJ SM062C127KHJ650 120  
420 M49470R01127MCJ SM062C127MHJ650 120  
467 M49470Q01126KEJ SM017C126KHJ650  
468 M49470Q01126KEJ SM017C126KHJ650  
12  
12  
421 M49470Q01154KEJ SM057C154KHJ120 0.15 10ꢀ  
422 M49470Q01154MEJ SM057C154MHJ120 0.15 20ꢀ  
423 M49470Q01184KEJ SM057C184KHJ240 0.18 10ꢀ  
424 M49470Q01184MEJ SM057C184MHJ240 0.18 20ꢀ  
425 M49470Q01224KEJ SM057C224KHJ240 0.22 10ꢀ  
426 M49470Q01224MEJ SM057C224MHJ240 0.22 20ꢀ  
427 M49470Q01274KEJ SM057C274KHJ240 0.27 10ꢀ  
428 M49470Q01274MEJ SM057C274MHJ240 0.27 20ꢀ  
429 M49470Q01334KEJ SM057C334KHJ360 0.33 10ꢀ  
430 M49470Q01334MEJ SM057C334MHJ360 0.33 20ꢀ  
431 M49470Q01394KEJ SM057C394KHJ360 0.39 10ꢀ  
432 M49470Q01394MEJ SM057C394MHJ360 0.39 20ꢀ  
433 M49470Q01474KEJ SM057C474KHJ360 0.47 10ꢀ  
434 M49470Q01474MEJ SM057C474MHJ360 0.47 20ꢀ  
435 M49470Q01564KEJ SM057C564KHJ480 0.56 10ꢀ  
436 M49470Q01564MEJ SM057C564MHJ480 0.56 20ꢀ  
M49470Q01564KEC SM047C564KHJ240 0.56 10ꢀ  
M49470Q01126MEC SM027C126MHJ480 12  
M49470Q01126MEC SM027C126MHJ480 12  
469 M49470Q01156KEJ SM027C156KHJ650  
470 M49470Q01156MEJ SM027C156MHJ650 15  
471 M49470Q01186KEJ SM027C186KHJ650 18  
472 M49470Q01186MEJ SM027C186MHJ650 18  
473 M49470Q01226KEJ SM067C226KHJ360 22  
474 M49470Q01226MEJ SM067C226MHJ360 22  
475 M49470Q01276KEJ SM067C276KHJ360 27  
476 M49470Q01276MEJ SM067C276MHJ360 27  
477 M49470Q01336KEJ SM067C336KHJ480 33  
478 M49470Q01336MEJ SM067C336MHJ480 33  
479 M49470Q01396KEJ SM067C396KHJ650 39  
480 M49470Q01396MEJ SM067C396MHJ650 39  
15  
M49470Q01564MEC SM047C564MHJ240 0.56 20ꢀ  
437 M49470Q01684KEJ SM057C684KHJ650 0.68 10ꢀ  
438 M49470Q01684MEJ SM057C684MHJ650 0.68 20ꢀ  
M49470Q01684KEC SM047C684KHJ240 0.68 10ꢀ  
M49470Q01684MEC SM047C684MHJ240 0.68 20ꢀ  
439 M49470Q01824KEJ SM047C824KHJ360 0.82 10ꢀ  
440 M49470Q01824MEJ SM047C824MHJ360 0.82 20ꢀ  
441 M49470Q01105KEJ SM047C105KHJ360  
1.0  
10ꢀ  
20ꢀ  
442 M49470Q01105MEJ SM047C105MHJ360 1.0  
18  
SMPS Stacked MLC Capacitors  
(SM Style) SM Military Styles DSCC Dwg. #87106 & #88011 U.S. Preferred Styles  
CHIP SEPARATION  
0.254 (0.010) TYP.  
D
E
1.397 (0.055)  
0.254 (0.010)  
A
B
6.35  
(0.250) MIN.  
0.254 (0.010) TYP.  
0.508 (0.020) TYP.  
2.54 (0.100) TYP.  
C
2.54 (0.100) MAX.  
0.635 (0.025) MIN.  
(NOTE 4)  
“N” STYLE LEADS  
0.254 (0.010) RAD. TYP.  
1.905 (0.075)  
0.635 (0.025)  
TYP.  
1.778 (0.070)  
0.254 (0.010)  
SCHEMATIC  
“J” STYLE LEADS  
millimeters (inches)  
DIMENSIONS  
Case  
Code  
A (max.)  
B (max.)  
(See Note 2)  
No. of Leads  
per side  
(See Note 2)  
16.5 (0.650)  
16.5 (0.650)  
16.5 (0.650)  
16.5 (0.650)  
16.5 (0.650)  
16.5 (0.650)  
C ±.635 (±0.025)  
11.4 (0.450)  
20.3 (0.800)  
11.4 (0.450)  
10.2 (0.400)  
6.35 (0.250)  
31.8 (1.250)  
D ±.635 (±0.025)  
52.1 (2.050)  
38.4 (1.510)  
26.7 (1.050)  
10.2 (0.400)  
6.35 (0.250)  
52.1 (2.050)  
E (max.)  
1
2
3
4
5
6
18.2 (0.715)  
18.2 (0.715)  
18.2 (0.715)  
18.2 (0.715)  
18.2 (0.715)  
18.2 (0.715)  
12.7 (0.500)  
22.1 (0.870)  
12.7 (0.500)  
11.2 (0.440)  
7.62 (0.300)  
34.3 (1.350)  
20  
15  
10  
4
3
20  
NOTES:  
1. Unless otherwise specified, tolerances 0.254 (±0.010).  
2. “A” dimensions are maximum (see tables on pages 22 thru 25 for specific part number dimensions).  
3. “N” straight leads; “J” leads formed in.  
4. For case code 5, dimensions shall be 2.54 (0.100) maximum, 0.305 (0.012) minimum.  
19  
SMPS Stacked MLC Capacitors  
(SM Style) SM Military Styles DSCC Dwg. #87106 & #88011 U.S. Preferred Styles  
Insulation Resistance.  
Ordering Information  
At +25°C, rated voltage: 100K Mor 1,000 MF,  
whichever is less.  
Part Number: The complete part number shall be as follows:  
X7R:  
87106  
XXX  
At +125°C, rated voltage: 10K Mor 100 MF,  
whichever is less.  
_________________  
Drawing number  
______________  
Dash number  
(see list)  
Dielectric Withstanding Voltage. Dielectric withstanding volt-  
age shall be 250 percent of rated voltage except 500V rated  
parts at 150 percent of rated voltage.  
Ordering Data. The contract or purchase order should  
specify the following:  
a. Complete part number.  
Capacitance Tolerance. J = ±5 percent, K = ±10 percent,  
M = ±20 percent.  
b. Requirements for delivery of one copy of the quality con-  
formance inspection data with each shipment of parts by  
the manufacturer.  
Solderability of Terminals. In accordance with MIL-PRF-  
49470.  
c. Whether the manufacturer performs the group B tests, or  
provides certification of compliance with group B require-  
ments.  
d. Requirements for notification of change of products to  
acquiring activity, if applicable.  
Resistance to Soldering Heat. In accordance with MIL-STD-  
202, method 210, condition B, for 20 seconds.  
e. Requirements for packaging and packing.  
Shock. In accordance with MIL-PRF-49470.  
Source of Supply.  
Vendor CAGE  
Vendor name  
number  
and address  
_____________  
_________________________  
Immersion Cycling. In accordance with MIL-PRF-49470.  
Moisture Resistance. In accordance with MIL-PRF-49470.  
96095  
Olean Advanced Products  
A Division of AVX Corporation  
1695 Seneca Avenue  
Olean, NY 14760  
Performance Characteristics  
Life. Life shall be 200 percent of rated voltage except 500V  
rated parts at 120 percent of rated voltage applied at +125°C for  
1,000 hours.  
Operating Temperature Range. The operating temperature  
range shall be -55°C to +125°C.  
Electrical Characteristics.  
Thermal Shock. MIL-STD-202, method 107, test condition A,  
except high temperature is +125°C.  
Rated Voltage. See tables on pages 22, 23, 24 & 25.  
Capacitance. Measured in accordance with method 305 of  
MIL-STD-202 (1KHz at 1.0Vrms, open circuit voltage, at +25°C).  
Voltage Conditioning. In accordance with MIL-PRF-49470,  
except 500V rated parts at 120 percent of rated voltage at  
+125°C.  
Dissipation Factor (+25°C). X7R: Dissipation factor shall be  
2.5 percent maximum (measured under the same conditions  
as capacitance.) C0G: Dissipation factor shall be 0.15 percent  
maximum.  
Terminal Strength. MIL-STD-202, method 211, condition B,  
except that each lead shall be bent away from the body 90  
degrees from the original position and back, two bends.  
Temperature Coefficient.  
DSCC Dwg.  
Bias = 0 volt  
Bias = rated voltage  
88011 All Voltages  
87106 50 WVDC  
0±30 ppm/°C  
±15%  
0±30 ppm/°C  
+15, -25%  
Marking. Marking shall be in accordance with MIL-STD-1285,  
except the part number shall be as specified in paragraph 1.2  
of 87106, or 88011 with the manufacturers name or code and  
date code minimum, except case sizes 4 and 5 shall be marked  
with coded cap and tolerance minimum. Full marking shall be  
included on the package.  
and 100 WVDC  
87106 200 WVDC  
87106 500 WVDC  
±15%  
±15%  
+15, -40%  
+15, -50%  
20  
SMPS Stacked MLC Capacitors  
(SM Style) DSCC #87106 and #88011  
Table II. Group A inspection.  
U.S. Preferred Styles  
Requirement  
paragraph of  
MIL-PRF-49470  
Test method  
paragraph of  
MIL-PRF-49470  
Inspection  
Sampling procedure  
Subgroup 1  
Thermal shock and voltage conditioning 1/  
3.9  
4.8.5  
4.8.4  
100% inspection  
Subgroup 2  
Visual and mechanical examination:  
Material  
Physical dimensions  
Interface requirements  
(other than physical dimensions)  
Marking 2/  
3.4  
3.1  
13 samples  
0 failures  
3.5 and 3.5.1  
3.28  
3.30  
Workmanship  
1/ Post checks are required (see paragraph 3.9 of MIL-PRF-49470).  
2/ Marking defects are based on visual examination only. Any subsequent electrical defects shall not  
be used as a basis for determining marking defects.  
Table III. Group B inspection. 1/  
Requirement  
paragraph of  
MIL-PRF-49470  
Test method  
paragraph of  
MIL-PRF-49470  
Number of  
sample units  
to be inspected  
Number of  
defectives  
permitted 2/  
Inspection  
Subgroup 1 3/  
Temperature coefficient  
Resistance to solvents 5/ 6/  
Immersion  
4/  
4/  
3.23  
3.18  
3.24  
4.8.20  
4.8.15  
4.8.10  
12  
12  
6
1
Terminal strength 5/  
Subgroup 2  
Resistance to soldering heat  
Moisture resistance  
3.20  
3.21  
4.8.17  
4.8.18  
1
1
6/ 1  
Subgroup 3  
Marking legibility  
(laser marking only)  
3.28.1  
4.8.4.1  
Subgroup 4  
Solderability  
3.15  
3.26  
4.8.12  
4.8.22  
3
0
0
Subgroup 5  
Life  
5 minimum  
per case code  
1/ Unless otherwise specified herein, when necessary, mounting of group B samples shall be at the  
discretion of the manufacturer.  
2/ A sample unit having one or more defects shall be charged as a single defective.  
3/ Order of tests is at discretion of manufacturer.  
4/ See 3.2.3 of DSCC 87106.  
5/ Sample size shall be 3 pieces with zero defectives permitted.  
6/ Total of one defect allowed for combination of subgroup 1, subgroup 2, and subgroup 3 inspections.  
21  
SMPS Stacked MLC Capacitors  
(SM Style) SM Military Styles DSCC Dwg. #87106 (X7R)  
Electrical characteristics  
U.S. Preferred Styles  
Max. A  
Dwg. Value Cap. Case Lead Dimension  
Max. A  
Max. A  
Dwg. Value Cap. Case Lead Dimension  
DSCC  
Cap.  
DSCC  
Cap.  
DSCC  
Cap.  
Dwg. Value Cap. Case Lead Dimension  
87106- (µF)  
Tol. Code Style mm (inches)  
87106- (µF)  
Tol. Code Style mm (inches)  
87106- (µF)  
Tol. Code Style mm (inches)  
50V  
100V  
50V  
272  
272  
18  
18  
M
M
3
3
J
J
6.10 (0.240)  
6.10 (0.240)  
055  
056  
301  
302  
.68  
.68  
.68  
.68  
K
M
K
5
5
5
5
N
N
J
3.05 (0.120)  
3.05 (0.120)  
3.05 (0.120)  
3.05 (0.120)  
001  
002  
241  
242  
003  
004  
243  
244  
1.0  
1.0  
1.0  
1.0  
1.2  
1.2  
1.2  
1.2  
K
M
K
5
5
5
5
5
5
5
5
N
N
J
3.05 (0.120)  
3.05 (0.120)  
3.05 (0.120)  
3.05 (0.120)  
3.05 (0.120)  
3.05 (0.120)  
3.05 (0.120)  
3.05 (0.120)  
031  
032  
273  
274  
033  
034  
275  
276  
035  
036  
277  
278  
22  
22  
22  
22  
27  
27  
27  
27  
33  
33  
33  
33  
K
M
K
3
3
3
3
3
3
3
3
3
3
3
3
N
N
J
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
M
J
M
K
J
N
N
J
057  
058  
303  
304  
059  
060  
305  
306  
061  
062  
307  
308  
.82  
.82  
.82  
.82  
1.0  
1.0  
1.0  
1.0  
1.2  
1.2  
1.2  
1.2  
K
M
K
5
5
5
5
5
5
5
5
5
5
5
5
N
N
J
6.10 (0.240)  
6.10 (0.240)  
6.10 (0.240)  
6.10 (0.240)  
6.10 (0.240)  
6.10 (0.240)  
6.10 (0.240)  
6.10 (0.240)  
6.10 (0.240)  
6.10 (0.240)  
6.10 (0.240)  
6.10 (0.240)  
M
K
M
M
K
J
N
N
J
J
M
K
M
K
J
005  
006  
245  
246  
007  
008  
247  
248  
009  
010  
249  
250  
1.5  
1.5  
1.5  
1.5  
1.8  
1.8  
1.8  
1.8  
2.2  
2.2  
2.2  
2.2  
K
M
K
5
5
5
5
5
5
5
5
5
5
5
5
N
N
J
6.10 (0.240)  
6.10 (0.240)  
6.10 (0.240)  
6.10 (0.240)  
6.10 (0.240)  
6.10 (0.240)  
6.10 (0.240)  
6.10 (0.240)  
6.10 (0.240)  
6.10 (0.240)  
6.10 (0.240)  
6.10 (0.240)  
N
N
J
M
K
J
M
K
N
N
J
M
K
J
M
K
M
K
J
N
N
J
N
N
J
M
K
M
J
M
K
037  
038  
279  
280  
39  
39  
39  
39  
K
M
K
3
3
3
3
N
N
J
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
M
K
J
M
J
N
N
J
063  
064  
309  
310  
065  
066  
311  
312  
1.5  
1.5  
1.5  
1.5  
1.8  
1.8  
1.8  
1.8  
K
M
K
5
5
5
5
5
5
5
5
N
N
J
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
M
K
M
J
M
J
039  
040  
281  
282  
47  
47  
47  
47  
K
M
K
3
3
3
3
N
N
J
16.5 (0.650)  
16.5 (0.650)  
16.5 (0.650)  
16.5 (0.650)  
M
K
J
011  
012  
251  
252  
013  
014  
253  
254  
2.7  
2.7  
2.7  
2.7  
3.3  
3.3  
3.3  
3.3  
K
M
K
5
5
5
5
5
5
5
5
N
N
J
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
N
N
J
M
K
M
J
M
K
J
M
J
225  
226  
283  
284  
56  
56  
56  
56  
K
M
K
1
1
1
1
N
N
J
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
N
N
J
067  
068  
313  
314  
069  
070  
315  
316  
2.2  
2.2  
2.2  
2.2  
2.7  
2.7  
2.7  
2.7  
K
M
K
5
5
5
5
5
5
5
5
N
N
J
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
M
K
M
J
M
J
M
K
J
041  
042  
285  
286  
043  
044  
287  
288  
68  
68  
68  
68  
82  
82  
82  
82  
K
M
K
1
1
1
1
1
1
1
1
N
N
J
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
015  
016  
255  
256  
017  
018  
257  
258  
3.9  
3.9  
3.9  
3.9  
4.7  
4.7  
4.7  
4.7  
K
M
K
5
5
5
5
5
5
5
5
N
N
J
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
N
N
J
M
K
M
K
J
M
K
J
M
J
N
N
J
N
N
J
M
K
071  
072  
317  
318  
3.3  
3.3  
3.3  
3.3  
K
M
K
5
5
5
5
N
N
J
16.5 (0.650)  
16.5 (0.650)  
16.5 (0.650)  
16.5 (0.650)  
M
K
M
J
M
J
M
J
045  
046  
289  
290  
100  
100  
100  
100  
K
M
K
1
1
1
1
N
N
J
16.5 (0.650)  
16.5 (0.650)  
16.5 (0.650)  
16.5 (0.650)  
019  
020  
259  
260  
5.6  
5.6  
5.6  
5.6  
K
M
K
5
5
5
5
N
N
J
16.5 (0.650)  
16.5 (0.650)  
16.5 (0.650)  
16.5 (0.650)  
073  
074  
319  
320  
075  
076  
321  
322  
3.9  
3.9  
3.9  
3.9  
4.7  
4.7  
4.7  
4.7  
K
M
K
4
4
4
4
4
4
4
4
N
N
J
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
M
J
M
J
M
K
J
227  
228  
291  
292  
120  
120  
120  
120  
K
M
K
2
2
2
2
N
N
J
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
223  
224  
261  
262  
6.8  
6.8  
6.8  
6.8  
K
M
K
4
4
4
4
N
N
J
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
N
N
J
M
K
M
J
M
J
M
J
047  
048  
293  
294  
150  
150  
150  
150  
K
M
K
2
2
2
2
N
N
J
16.5 (0.650)  
16.5 (0.650)  
16.5 (0.650)  
16.5 (0.650)  
021  
022  
263  
264  
8.2  
8.2  
8.2  
8.2  
K
M
K
4
4
4
4
N
N
J
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
077  
078  
323  
324  
079  
080  
325  
326  
5.6  
5.6  
5.6  
5.6  
6.8  
6.8  
6.8  
6.8  
K
M
K
4
4
4
4
4
4
4
4
N
N
J
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
M
J
M
J
M
K
J
049  
050  
295  
296  
051  
052  
297  
298  
180  
180  
180  
180  
220  
220  
220  
220  
K
M
K
6
6
6
6
6
6
6
6
N
N
J
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
N
N
J
023  
024  
265  
266  
025  
026  
267  
268  
10  
10  
10  
10  
12  
12  
12  
12  
K
M
K
4
4
4
4
4
4
4
4
N
N
J
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
M
K
M
K
J
M
J
M
K
J
N
N
J
N
N
J
081  
082  
327  
328  
8.2  
8.2  
8.2  
8.2  
K
M
K
4
4
4
4
N
N
J
16.5 (0.650)  
16.5 (0.650)  
16.5 (0.650)  
16.5 (0.650)  
M
K
M
K
M
J
M
J
M
J
053  
054  
299  
300  
270  
270  
270  
270  
K
M
K
6
6
6
6
N
N
J
16.5 (0.650)  
16.5 (0.650)  
16.5 (0.650)  
16.5 (0.650)  
027  
028  
269  
270  
15  
15  
15  
15  
K
M
K
4
4
4
4
N
N
J
16.5 (0.650)  
16.5 (0.650)  
16.5 (0.650)  
16.5 (0.650)  
229  
230  
329  
330  
083  
084  
331  
332  
10  
10  
10  
10  
12  
12  
12  
12  
K
M
K
3
3
3
3
3
3
3
3
N
N
J
6.10 (0.240)  
6.10 (0.240)  
6.10 (0.240)  
6.10 (0.240)  
6.10 (0.240)  
6.10 (0.240)  
6.10 (0.240)  
6.10 (0.240)  
M
J
M
K
J
M
J
N
N
J
029  
030  
271  
18  
18  
18  
K
M
K
3
3
3
N
N
J
6.10 (0.240)  
6.10 (0.240)  
6.10 (0.240)  
M
K
M
J
22  
SMPS Stacked MLC Capacitors  
(SM Style) SM Military Styles DSCC Dwg. #87106 (X7R)  
Electrical characteristics  
U.S. Preferred Styles  
DSCC  
Cap.  
Max. A  
DSCC  
Cap.  
Max. A  
DSCC  
Cap.  
Max. A  
Dwg. Value Cap. Case Lead Dimension  
Dwg. Value Cap. Case Lead Dimension  
Dwg. Value Cap. Case Lead Dimension  
87106- (µF)  
Tol. Code Style mm (inches)  
87106- (µF)  
Tol. Code Style mm (inches)  
100V  
87106- (µF)  
Tol. Code Style mm (inches)  
200V  
200V  
145  
146  
393  
394  
10  
10  
10  
10  
K
M
K
3
3
3
3
N
N
J
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
085  
086  
333  
334  
087  
088  
335  
336  
15  
15  
15  
15  
18  
18  
18  
18  
K
M
K
3
3
3
3
3
3
3
3
N
N
J
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
113  
114  
361  
362  
115  
116  
363  
364  
.47  
.47  
.47  
.47  
.56  
.56  
.56  
.56  
K
M
K
5
5
5
5
5
5
5
5
N
N
J
6.10 (0.240)  
6.10 (0.240)  
6.10 (0.240)  
6.10 (0.240)  
6.10 (0.240)  
6.10 (0.240)  
6.10 (0.240)  
6.10 (0.240)  
M
J
M
K
J
M
K
J
N
N
J
N
N
J
147  
148  
395  
396  
12  
12  
12  
12  
K
M
K
3
3
3
3
N
N
J
16.5 (0.650)  
16.5 (0.650)  
16.5 (0.650)  
16.5 (0.650)  
M
K
M
M
K
M
J
J
M
J
089  
090  
337  
338  
22  
22  
22  
22  
K
M
M
M
3
3
3
3
N
N
K
J
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
117  
118  
365  
366  
119  
120  
367  
368  
.68  
.68  
.68  
.68  
.82  
.82  
.82  
.82  
K
M
K
5
5
5
5
5
5
5
5
N
N
J
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
149  
150  
397  
398  
15  
15  
15  
15  
K
M
K
1
1
1
1
N
N
J
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
M
K
J
M
J
N
N
J
091  
092  
339  
340  
27  
27  
27  
27  
K
M
K
3
3
3
3
N
N
J
16.5 (0.650)  
16.5 (0.650)  
16.5 (0.650)  
16.5 (0.650)  
M
M
M
151  
152  
399  
400  
18  
18  
18  
18  
K
M
K
1
1
1
1
N
N
J
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
J
M
J
M
J
121  
122  
369  
370  
123  
124  
371  
372  
1.0  
1.0  
1.0  
1.0  
1.2  
1.2  
1.2  
1.2  
K
M
K
5
5
5
5
5
5
5
5
N
N
J
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
093  
094  
341  
342  
33  
33  
33  
33  
K
M
K
1
1
1
1
N
N
J
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
153  
154  
401  
402  
155  
156  
403  
404  
22  
22  
22  
22  
27  
27  
27  
27  
K
M
K
1
1
1
1
1
1
1
1
N
N
J
16.5 (0.650)  
16.5 (0.650)  
16.5 (0.650)  
16.5 (0.650)  
16.5 (0.650)  
16.5 (0.650)  
16.5 (0.650)  
16.5 (0.650)  
M
K
J
M
J
N
N
J
M
K
J
M
K
N
N
J
095  
096  
343  
344  
097  
098  
345  
346  
39  
39  
39  
39  
47  
47  
47  
47  
K
M
K
1
1
1
1
1
1
1
1
N
N
J
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
M
K
M
J
M
J
M
K
J
125  
126  
373  
374  
1.5  
1.5  
1.5  
1.5  
K
M
K
5
5
5
5
N
N
J
16.5 (0.650)  
16.5 (0.650)  
16.5 (0.650)  
16.5 (0.650)  
N
N
J
157  
158  
405  
406  
33  
33  
33  
33  
K
M
K
2
2
2
2
N
N
J
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
M
K
M
J
M
J
M
J
127  
128  
375  
376  
129  
130  
377  
378  
1.8  
1.8  
1.8  
1.8  
2.2  
2.2  
2.2  
2.2  
K
M
K
4
4
4
4
4
4
4
4
N
N
J
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
099  
100  
347  
348  
56  
56  
56  
56  
K
M
K
1
1
1
1
N
N
J
16.5 (0.650)  
16.5 (0.650)  
16.5 (0.650)  
16.5 (0.650)  
159  
160  
407  
408  
39  
39  
39  
39  
K
M
K
2
2
2
2
N
N
J
16.5 (0.650)  
16.5 (0.650)  
16.5 (0.650)  
16.5 (0.650)  
M
K
J
N
N
J
M
J
M
J
M
K
101  
102  
349  
350  
68  
68  
68  
68  
K
M
K
2
2
2
2
N
N
J
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
161  
162  
409  
410  
47  
47  
47  
47  
K
M
K
6
6
6
6
N
N
J
6.10 (0.240)  
6.10 (0.240)  
6.10 (0.240)  
6.10 (0.240)  
M
J
131  
132  
379  
380  
133  
134  
381  
382  
2.7  
2.7  
2.7  
2.7  
3.3  
3.3  
3.3  
3.3  
K
M
K
4
4
4
4
4
4
4
4
N
N
J
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
M
J
M
J
103  
104  
351  
352  
82  
82  
82  
82  
K
M
K
2
2
2
2
N
N
J
16.5 (0.650)  
16.5 (0.650)  
16.5 (0.650)  
16.5 (0.650)  
163  
164  
411  
412  
165  
166  
413  
414  
56  
56  
56  
56  
68  
68  
68  
68  
K
M
K
6
6
6
6
6
6
6
6
N
N
J
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
M
K
J
N
N
J
M
K
M
J
M
K
J
N
N
J
105  
106  
353  
354  
107  
108  
355  
356  
100  
100  
100  
100  
120  
120  
120  
120  
K
M
K
6
6
6
6
6
6
6
6
N
N
J
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
M
J
M
K
135  
136  
383  
384  
3.9  
3.9  
3.9  
3.9  
K
M
K
4
4
4
4
N
N
J
16.5 (0.650)  
16.5 (0.650)  
16.5 (0.650)  
16.5 (0.650)  
M
J
M
K
J
N
N
J
167  
168  
415  
416  
82  
82  
82  
82  
K
M
K
6
6
6
6
N
N
J
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
M
J
M
K
137  
138  
385  
386  
139  
140  
387  
388  
4.7  
4.7  
4.7  
4.7  
5.6  
5.6  
5.6  
5.6  
K
M
K
3
3
3
3
3
3
3
3
N
N
J
6.10 (0.240)  
6.10 (0.240)  
6.10 (0.240)  
6.10 (0.240)  
6.10 (0.240)  
6.10 (0.240)  
6.10 (0.240)  
6.10 (0.240)  
M
J
M
J
109  
110  
357  
358  
150  
150  
150  
150  
K
M
K
6
6
6
6
N
N
J
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
169  
170  
417  
418  
171  
172  
419  
420  
100  
100  
100  
100  
120  
120  
120  
120  
K
M
K
6
6
6
6
6
6
6
6
N
N
J
16.5 (0.650)  
16.5 (0.650)  
16.5 (0.650)  
16.5 (0.650)  
16.5 (0.650)  
16.5 (0.650)  
16.5 (0.650)  
16.5 (0.650)  
M
K
J
N
N
J
M
K
M
J
M
K
J
N
N
J
111  
112  
359  
360  
180  
180  
180  
180  
K
M
K
6
6
6
6
N
N
J
16.5 (0.650)  
16.5 (0.650)  
16.5 (0.650)  
16.5 (0.650)  
M
J
M
K
141  
142  
389  
390  
143  
144  
391  
392  
6.8  
6.8  
6.8  
6.8  
8.2  
8.2  
8.2  
8.2  
K
M
K
3
3
3
3
3
3
3
3
N
N
J
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
M
J
M
J
M
K
J
N
N
J
M
K
M
J
23  
SMPS Stacked MLC Capacitors  
(SM Style) SM Military Styles DSCC Dwg. #87106 (X7R)  
Electrical characteristics  
U.S. Preferred Styles  
DSCC  
Cap.  
Max. A  
DSCC  
Cap.  
Max. A  
Dwg. Value Cap. Case Lead Dimension  
Dwg. Value Cap. Case Lead Dimension  
87106- (µF)  
Tol. Code Style mm (inches)  
500V  
87106- (µF)  
Tol. Code Style mm (inches)  
500V  
173  
174  
421  
422  
.15  
.15  
.15  
.15  
K
M
K
5
5
5
5
N
N
J
3.05 (0.120)  
3.05 (0.120)  
3.05 (0.120)  
3.05 (0.120)  
201  
202  
453  
454  
203  
204  
455  
456  
3.3  
3.3  
3.3  
3.3  
3.9  
3.9  
3.9  
3.9  
K
M
K
3
3
3
3
3
3
3
3
N
N
J
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
M
J
M
K
J
N
N
J
175  
176  
423  
424  
177  
178  
425  
426  
179  
180  
427  
428  
.18  
.18  
.18  
.18  
.22  
.22  
.22  
.22  
.27  
.27  
.27  
.27  
K
M
K
5
5
5
5
5
5
5
5
5
5
5
5
N
N
J
6.10 (0.240)  
6.10 (0.240)  
6.10 (0.240)  
6.10 (0.240)  
6.10 (0.240)  
6.10 (0.240)  
6.10 (0.240)  
6.10 (0.240)  
6.10 (0.240)  
6.10 (0.240)  
6.10 (0.240)  
6.10 (0.240)  
M
K
M
J
M
K
J
N
N
J
205  
206  
457  
458  
4.7  
4.7  
4.7  
4.7  
K
M
K
3
3
3
3
N
N
J
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
M
K
M
K
J
M
J
N
N
J
207  
208  
459  
460  
5.6  
5.6  
5.6  
5.6  
K
M
K
3
3
3
3
N
N
J
16.5 (0.650)  
16.5 (0.650)  
16.5 (0.650)  
16.5 (0.650)  
M
K
M
J
M
J
181  
182  
429  
430  
183  
184  
431  
432  
185  
186  
433  
434  
.33  
.33  
.33  
.33  
.39  
.39  
.39  
.39  
.47  
.47  
.47  
.47  
K
M
K
5
5
5
5
5
5
5
5
5
5
5
5
N
N
J
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
235  
236  
461  
462  
209  
210  
463  
464  
211  
212  
465  
466  
6.8  
6.8  
6.8  
6.8  
8.2  
8.2  
8.2  
8.2  
10  
K
M
K
1
1
1
1
1
1
1
1
1
1
1
1
N
N
J
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
M
K
J
M
K
J
N
N
J
N
N
J
M
K
M
K
M
K
J
M
K
J
N
N
J
N
N
J
M
K
10  
M
K
10  
M
J
10  
M
J
187  
188  
435  
436  
.56  
.56  
.56  
.56  
K
M
K
5
5
5
5
N
N
J
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
213  
214  
467  
468  
237  
238  
469  
470  
215  
216  
471  
472  
12  
12  
12  
12  
15  
15  
15  
15  
18  
18  
18  
18  
K
M
K
1
1
1
1
2
2
2
2
2
2
2
2
N
N
J
16.5 (0.650)  
16.5 (0.650)  
16.5 (0.650)  
16.5 (0.650)  
16.5 (0.650)  
16.5 (0.650)  
16.5 (0.650)  
16.5 (0.650)  
16.5 (0.650)  
16.5 (0.650)  
16.5 (0.650)  
16.5 (0.650)  
M
J
M
K
J
189  
190  
437  
438  
231  
232  
439  
440  
191  
192  
441  
442  
193  
194  
443  
444  
.68  
.68  
.68  
.68  
.82  
.82  
.82  
.82  
1.0  
1.0  
1.0  
1.0  
1.2  
1.2  
1.2  
1.2  
K
M
K
5
5
5
5
4
4
4
4
4
4
4
4
4
4
4
4
N
N
J
16.5 (0.650)  
16.5 (0.650)  
16.5 (0.650)  
16.5 (0.650)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
N
N
J
M
K
M
K
J
M
K
J
N
N
J
N
N
J
M
K
M
K
M
K
J
M
J
N
N
J
239  
240  
473  
474  
217  
218  
475  
476  
22  
22  
22  
22  
27  
27  
27  
27  
K
M
K
6
6
6
6
6
6
6
6
N
N
J
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
M
K
M
K
J
M
K
J
N
N
J
N
N
J
M
K
M
K
M
J
M
J
195  
196  
445  
446  
1.5  
1.5  
1.5  
1.5  
K
M
K
4
4
4
4
N
N
J
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
219  
220  
477  
478  
33  
33  
33  
33  
K
M
K
6
6
6
6
N
N
J
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
M
J
M
J
197  
198  
447  
448  
1.8  
1.8  
1.8  
1.8  
K
M
K
4
4
4
4
N
N
J
16.5 (0.650)  
16.5 (0.650)  
16.5 (0.650)  
16.5 (0.650)  
221  
222  
479  
480  
39  
39  
39  
39  
K
M
K
6
6
6
6
N
N
J
16.5 (0.650)  
16.5 (0.650)  
16.5 (0.650)  
16.5 (0.650)  
M
J
M
J
233  
234  
449  
450  
2.2  
2.2  
2.2  
2.2  
K
M
K
3
3
3
3
N
N
J
6.10 (0.240)  
6.10 (0.240)  
6.10 (0.240)  
6.10 (0.240)  
M
J
199  
200  
451  
452  
2.7  
2.7  
2.7  
2.7  
K
M
K
3
3
3
3
N
N
J
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
M
J
24  
SMPS Stacked MLC Capacitors  
(SM Style) SM Military Styles DSCC Dwg. #88011 (C0G)  
CG (C0G) Electrical characteristics per MIL-C-20  
U.S. Preferred Styles  
DSCC  
Cap.  
Max. A  
DSCC  
Cap.  
Max. A  
DSCC  
Cap.  
Max. A  
Dwg. Value Cap. Case Lead Dimension  
Dwg. Value Cap. Case Lead Dimension  
Dwg. Value Cap. Case Lead Dimension  
88011- (µF)  
Tol. Code Style mm (inches)  
50V  
88011- (µF)  
Tol. Code Style mm (inches)  
100V (continued)  
88011- (µF)  
Tol. Code Style mm (inches)  
200V (continued)  
001*  
002*  
003*  
004*  
005*  
006*  
007*  
008*  
009*  
010*  
011*  
012*  
013*  
014*  
015*  
016*  
017*  
018*  
019*  
020*  
021*  
022*  
023*  
024*  
025*  
026*  
027*  
028*  
029*  
030*  
031*  
032*  
033*  
034*  
035*  
036*  
037*  
038*  
039*  
040*  
041*  
042*  
043*  
044*  
045*  
046*  
047*  
048*  
049*  
050*  
051*  
052*  
053*  
054*  
055*  
056*  
057*  
058*  
059*  
060*  
.056  
.056  
.068  
.068  
.082  
.082  
.10  
.10  
.12  
.12  
.15  
.15  
.18  
.18  
.22  
.22  
.27  
.27  
.33  
.33  
.39  
.39  
.47  
.47  
.56  
.56  
.68  
.68  
.82  
.82  
1.0  
1.0  
1.2  
1.2  
1.5  
1.5  
1.8  
1.8  
2.2  
2.2  
2.7  
2.7  
3.3  
3.3  
3.9  
3.9  
4.7  
4.7  
5.6  
5.6  
6.8  
6.8  
8.2  
8.2  
10  
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
4
4
4
4
4
4
4
4
3
3
3
3
3
3
3
3
3
3
3
3
3
3
1
1
1
1
1
1
1
1
2
2
6
6
6
6
6
6
6
6
6
6
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
3.05 (0.120)  
3.05 (0.120)  
6.10 (0.240)  
6.10 (0.240)  
6.10 (0.240)  
6.10 (0.240)  
6.10 (0.240)  
6.10 (0.240)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
16.5 (0.650)  
16.5 (0.650)  
9.14 (0.360)  
9.14 (0.360)  
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
16.5 (0.650)  
16.5 (0.650)  
6.10 (0.240)  
6.10 (0.240)  
6.10 (0.240)  
6.10 (0.240)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
16.5 (0.650)  
16.5 (0.650)  
9.14 (0.360)  
9.14 (0.360)  
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
16.5 (0.650)  
16.5 (0.650)  
16.5 (0.650)  
16.5 (0.650)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
16.5 (0.650)  
16.5 (0.650)  
080*  
081*  
082*  
083*  
084*  
085*  
086*  
087*  
088*  
089*  
090*  
091*  
092*  
093*  
094*  
095*  
096*  
097*  
098*  
099*  
100*  
101*  
102*  
103*  
104*  
105*  
106*  
107*  
108*  
109*  
110*  
111*  
112*  
113*  
114*  
115*  
116*  
117*  
118*  
119*  
120*  
.27  
.33  
.33  
.39  
.39  
.47  
.47  
.56  
.56  
.68  
.68  
.82  
.82  
1.0  
1.0  
1.2  
1.2  
1.5  
1.5  
1.8  
1.8  
2.2  
2.2  
2.7  
2.7  
3.3  
3.3  
3.9  
3.9  
4.7  
4.7  
5.6  
5.6  
6.8  
6.8  
8.2  
8.2  
10  
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
4
4
4
4
4
4
4
4
4
3
3
3
3
3
3
3
3
3
3
3
3
1
1
1
1
1
1
2
2
2
2
6
6
6
6
6
6
6
6
6
6
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
9.14 (0.360)  
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
16.5 (0.650)  
16.5 (0.650)  
16.5 (0.650)  
16.5 (0.650)  
6.10 (0.240)  
6.10 (0.240)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
16.5 (0.650)  
16.5 (0.650)  
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
16.5 (0.650)  
16.5 (0.650)  
12.2 (0.480)  
12.2 (0.480)  
16.5 (0.650)  
16.5 (0.650)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
12.2 (0.480)  
12.2 (0.480)  
16.5 (0.650)  
16.5 (0.650)  
16.5 (0.650)  
16.5 (0.650)  
159*  
160*  
161*  
162*  
163*  
164*  
165*  
166*  
167*  
168*  
169*  
170*  
171*  
172*  
173*  
174*  
175*  
176*  
177*  
178*  
179*  
180*  
.82  
.82  
1.0  
1.0  
1.2  
1.2  
1.5  
1.5  
1.8  
1.8  
2.2  
2.2  
2.7  
2.7  
3.3  
3.3  
3.9  
3.9  
4.7  
4.7  
5.6  
5.6  
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
3
3
3
3
1
1
1
1
1
1
2
2
2
2
6
6
6
6
6
6
6
6
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
16.5 (0.650)  
16.5 (0.650)  
16.5 (0.650)  
16.5 (0.650)  
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
16.5 (0.650)  
16.5 (0.650)  
12.2 (0.480)  
12.2 (0.480)  
16.5 (0.650)  
16.5 (0.650)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
12.2 (0.480)  
12.2 (0.480)  
16.5 (0.650)  
16.5 (0.650)  
K
J
K
J
K
500V  
181*  
182*  
183*  
184*  
185*  
186*  
187*  
188*  
189*  
190*  
191*  
192*  
193*  
194*  
195*  
196*  
197*  
198*  
199*  
200*  
201*  
202*  
203*  
204*  
205*  
206*  
207*  
208*  
209*  
210*  
211*  
212*  
213*  
214*  
215*  
216*  
217*  
218*  
219*  
220*  
221*  
222*  
223*  
224*  
225*  
226*  
227*  
228*  
229*  
230*  
231*  
232*  
233*  
234*  
235*  
236*  
237*  
238*  
.010  
.010  
.012  
.012  
.015  
.015  
.018  
.018  
.022  
.022  
.027  
.027  
.033  
.033  
.039  
.039  
.047  
.047  
.056  
.056  
.068  
.068  
.082  
.082  
.10  
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
4
4
4
4
4
4
4
4
4
4
3
3
3
3
3
3
3
3
3
3
3
3
1
1
1
1
1
1
1
1
2
2
2
2
6
6
6
6
6
6
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
3.05 (0.120)  
3.05 (0.120)  
6.10 (0.240)  
6.10 (0.240)  
6.10 (0.240)  
6.10 (0.240)  
6.10 (0.240)  
6.10 (0.240)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
16.5 (0.650)  
16.5 (0.650)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
16.5 (0.650)  
16.5 (0.650)  
6.10 (0.240)  
6.10 (0.240)  
6.10 (0.240)  
6.10 (0.240)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
12.2 (0.480)  
12.2 (0.480)  
16.5 (0.650)  
16.5 (0.650)  
9.14 (0.360)  
9.14 (0.360)  
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
16.5 (0.650)  
16.5 (0.650)  
12.2 (0.480)  
12.2 (0.480)  
16.5 (0.650)  
16.5 (0.650)  
9.14 (0.360)  
9.14 (0.360)  
12.2 (0.480)  
12.2 (0.480)  
16.5 (0.650)  
16.5 (0.650)  
K
J
K
J
K
J
K
J
K
10  
12  
12  
200V  
121*  
122*  
123*  
124*  
125*  
126*  
127*  
128*  
129*  
130*  
131*  
132*  
133*  
134*  
135*  
136*  
137*  
138*  
139*  
140*  
141*  
142*  
143*  
144*  
145*  
146*  
147*  
148*  
149*  
150*  
151*  
152*  
153*  
154*  
155*  
156*  
157*  
158*  
.022  
.022  
.027  
.027  
.033  
.033  
.039  
.039  
.047  
.047  
.056  
.056  
.068  
.068  
.082  
.082  
.10  
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
4
4
4
4
4
4
4
4
4
4
3
3
3
3
3
3
3
3
3
3
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
3.05 (0.120)  
3.05 (0.120)  
6.10 (0.240)  
6.10 (0.240)  
6.10 (0.240)  
6.10 (0.240)  
6.10 (0.240)  
6.10 (0.240)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
16.5 (0.650)  
16.5 (0.650)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
16.5 (0.650)  
16.5 (0.650)  
6.10 (0.240)  
6.10 (0.240)  
6.10 (0.240)  
6.10 (0.240)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
12.2 (0.480)  
12.2 (0.480)  
.10  
.12  
.12  
.15  
.15  
.18  
10  
.18  
12  
.22  
12  
K
J
K
.22  
15  
.27  
15  
.27  
.33  
.10  
100V  
.33  
.12  
.39  
.12  
061*  
062*  
063*  
064*  
065*  
066*  
067*  
068*  
069*  
070*  
071*  
072*  
073*  
074*  
075*  
076*  
077*  
078*  
079*  
.047  
.047  
.056  
.056  
.068  
.068  
.082  
.082  
.10  
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
K
J
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
4
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
6.10 (0.240)  
6.10 (0.240)  
6.10 (0.240)  
6.10 (0.240)  
6.10 (0.240)  
6.10 (0.240)  
6.10 (0.240)  
6.10 (0.240)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
9.14 (0.360)  
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
12.2 (0.480)  
16.5 (0.650)  
16.5 (0.650)  
9.14 (0.360)  
.39  
.15  
.47  
.15  
.47  
.18  
.56  
.18  
.56  
.22  
.68  
.22  
.68  
.27  
.82  
.27  
.82  
.33  
.10  
1.0  
.33  
.12  
1.0  
.39  
.12  
1.2  
.39  
.15  
1.2  
.47  
.15  
1.5  
.47  
K
J
K
J
K
.18  
1.5  
.56  
.18  
1.8  
.56  
.22  
1.8  
.68  
.22  
K
J
2.2  
.68  
.27  
2.2  
*Add J or L for applicable formed leads  
25  
SMPS Stacked MLC Capacitors  
(SM9 Style) Technical Information on SMPS Capacitors  
ELECTRICAL SPECIFICATIONS  
U.S. Preferred Styles  
Temperature Coefficient  
Dielectric Withstanding Voltage 25°C (Flash Test)  
C0G: A Temperature Coefficient - 0 ±30 ppm/°C, -55° to +125°C  
X7R: C Temperature Coefficient - ±15%, -55° to +125°C  
Z5U: E Temperature Coefficient - +22, -56%, +10° to +85°C  
C0G and X7R: 250% rated voltage for 5 seconds with 50 mA max  
charging current. (500 Volt units @ 750 VDC)  
Z5U: 200% rated voltage for 5 seconds with 50 mA max charging  
current.  
Capacitance Test (MIL-STD-202 Method 305)  
C0G: 25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz  
X7R: 25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz  
Z5U: 25°C, 0.5 Vrms max (open circuit voltage) at 1KHz  
Life Test (1000 hrs)  
C0G and X7R: 200% rated voltage at +125°C. (500 Volt units @  
600 VDC)  
Z5U: 150% rated voltage at +85°C  
Dissipation Factor 25°C  
C0G: 0.15% Max @ 25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz  
X7R: 2.5% Max @ 25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz  
Z5U: 3.0% Max @ 25°C, 0.5 Vrms max (open circuit voltage) at 1KHz  
Moisture Resistance (MIL-STD-202 Method 106)  
C0G, X7R, Z5U: Ten cycles with no voltage applied.  
Thermal Shock (MIL-STD-202 Method 107, Condition A)  
Immersion Cycling (MIL-STD-202 Method104, Condition B)  
Insulation Resistance 25°C (MIL-STD-202 Method 302)  
C0G and X7R: 100K Mor 1000 MF, whichever is less.  
Z5U: 10K Mor 1000 MF, whichever is less.  
Resistance To Solder Heat (MIL-STD-202, Method 210,  
Condition B, for 20 seconds)  
Insulation Resistance 125°C (MIL-STD-202 Method 302)  
C0G and X7R: 10K Mor 100 MF, whichever is less.  
Z5U: 1K Mor 100 MF, whichever is less.  
Typical ESR (m)  
24 µF Performance  
Aluminum  
Electrolytic  
2,100  
Tantalum  
MLC  
ESR @ 50KHz  
ESR @ 100KHz  
ESR @ 500KHz  
ESR @ 1MHz  
ESR @ 5MHz  
ESR @ 10MHz  
140  
125  
105  
105  
140  
190  
1
1
2.5  
5
10  
14  
2,000  
1,600  
1,500  
1,200  
1,700  
HOW TO ORDER  
AVX Styles: SM91, SM92, SM93, SM94, SM95, SM96  
SM9  
1
7
C
106  
M
A
N
660  
AVX Style  
Size  
SM9 = Plastic dimen-  
Size  
See  
Voltage  
50V = 5  
100V = 1  
200V = 2  
500V = 7  
Temperature Capacitance  
Capacitance  
Tolerance  
Test  
Level  
A = Standard  
B = Hi-Rel  
Termination  
N = Straight Lead  
J = Leads formed  
in  
L = Leads formed  
out  
Height  
See table  
on next  
page for  
max cap.  
per  
Coefficient  
C0G = A  
X7R = C  
Code  
(2 significant C0G: J = ±5%  
digits + no.  
of zeros)  
Case  
sions  
chart  
K = ±10%  
M = ±20%  
*
Z5U = E  
10 pF = 100 X7R: K = ±10%  
100 pF = 101  
1,000 pF = 102  
M = ±20%  
Z = +80, -20%  
height  
22,000 pF = 223 Z5U: Z = +80, -20%  
220,000 pF = 224  
1 µF = 105  
P = GMV (+100, -0%)  
10 µF = 106  
100 µF = 107  
Note: Capacitors with X7R and Z5U dielectrics are not intended for applications  
across AC supply mains or AC line filtering with polarity reversal. Contact plant  
for recommendations.  
Hi-Rel screening for C0G and X7R only. Screening consists of 100% Group A  
*
(B Level), Subgroup 1 per MIL-PRF-49470.  
26  
SMPS Stacked MLC Capacitors  
Encapsulated in DAP (Diallyl Phthalate) Case  
(SM9 Style)  
U.S. Preferred Styles  
D
E
0.381 (0.015)  
0.127 (0.005)  
Maximum Height  
(see table)  
6.35 (0.250) (MIN.)  
4.445 (0.175) MAX  
1.016 (0.040) MIN  
0.254 (0.010) TYP.  
C
E
0.508 (0.020) TYP.  
2.54 (0.100)  
CENTERS TYP.  
“N” STYLE LEADS  
D
Maximum Height  
(see table)  
0.381 (0.015)  
0.127 (0.005)  
0.254 (0.010)  
RAD. TYP.  
1.778 (0.070)  
0.254 (0.010)  
0.254 (0.010)  
TYP.  
1.905 (0.075)  
0.635 (0.025) TYP.  
0.508 (0.020) TYP.  
4.445 (0.175) MAX  
1.016 (0.040) MIN  
2.54 (0.100)  
C
CENTERS TYP.  
“J” STYLE LEADS  
D
E
Maximum Height  
(see table)  
0.381 (0.015)  
0.127 (0.005)  
0.254 (0.010)  
RAD. TYP.  
1.778 (0.070)  
0.254 (0.010)  
0.254 (0.010)  
TYP.  
1.905 (0.075)  
0.635 (0.025) TYP.  
0.508 (0.020)TYP.  
4.445 (0.175) MAX  
1.016 (0.040) MIN  
2.54 (0.100)  
CENTERS TYP.  
C
“L” STYLE LEADS  
DIMENSIONS  
millimeters (inches)  
C
D
E
No. of Leads  
per side*  
Case Code  
±0.635 (0.025)  
±0.254 (0.010)  
+0.000 (0.000) -0.254 (0.010)  
SM91  
SM92  
SM93  
SM94  
SM95  
SM96  
11.4 (0.450)  
20.3 (0.800)  
11.4 (0.450)  
10.2 (0.400)  
6.35 (0.250)  
31.8 (1.250)  
54.7 (2.155)  
41.0 (1.615)  
29.3 (1.155)  
12.3 (0.485)  
9.02 (0.355)  
54.7 (2.155)  
14.7 (0.580)  
24.1 (0.950)  
14.7 (0.580)  
12.3 (0.485)  
9.02 (0.355)  
36.3 (1.430)  
20  
15  
10  
4
3
20  
*Leads styles N, J or L available  
27  
SMPS Stacked MLC Capacitors  
Encapsulated in DAP (Diallyl Phthalate) Case  
(SM9 Style)  
U.S. Preferred Styles  
Max Capacitance (µF) Available Versus Style with Height of 0.270" - 6.86mm  
SM91 _ _ _ _ _ _ AN270  
SM92 _ _ _ _ _ _ AN270  
SM93 _ _ _ _ _ _ AN270  
SM94 _ _ _ _ _ _ AN270  
SM95 _ _ _ _ _ _ AN270  
SM96 _ _ _ _ _ _ AN270  
AVX  
STYLE  
50V 100V 200V 500V 50V 100V 200V 500V 50V 100V 200V 500V 50V 100V 200V 500V 50V 100V 200V 500V 50V 100V 200V 500V  
1.0 .70 .40 .18 1.2 1.0 .60 .26 .47 .40 .20 .09 .16 .13 .07 .02 .05 .04 .02 .01 3.2 2.4 1.3 .50  
C0G  
27 12 7.0 2.6 41 18 11 4.0 18 6.0 3.6 1.3 7.5 1.8 1.1 .40 2.8 .68 .40 .16 80 40 24 9.4  
84 32 12 – – 110 46 34 – – 40 15 6.0 – – 12 4.6 3.0 – – 4.6 1.8 .72 – – 260 140 92 – –  
X7R  
Z5U  
Max Capacitance (µF) Available Versus Style with Height of 0.390" - 9.91mm  
SM91 _ _ _ _ _ _ AN390  
SM92 _ _ _ _ _ _ AN390  
SM93 _ _ _ _ _ _ AN390  
SM94 _ _ _ _ _ _ AN390  
SM95 _ _ _ _ _ _ AN390  
SM96 _ _ _ _ _ _ AN390  
AVX  
STYLE  
50V 100V 200V 500V 50V 100V 200V 500V 50V 100V 200V 500V 50V 100V 200V 500V 50V 100V 200V 500V 50V 100V 200V 500V  
2.0 1.4 .80 .36 2.4 2.0 1.2 .52 1.0 .80 .40 .18 .32 .26 .14 .05 .10 .08 .05 .02 6.4 4.8 2.6 1.0  
C0G  
54 24 14 5.2 82 36 22 8.0 36 12 7.2 2.6 15 3.6 2.2 .80 5.6 1.3 .80 .32 160 80 48 18  
160 64 24 – – 230 92 68 – – 80 30 12 – – 24 9.2 6.0 – – 9.2 3.6 1.4 – – 520 280 180 – –  
X7R  
Z5U  
Max Capacitance (µF) Available Versus Style with Height of 0.530" - 13.46mm  
SM91 _ _ _ _ _ _ AN530  
SM92 _ _ _ _ _ _ AN530  
SM93 _ _ _ _ _ _ AN530  
SM94 _ _ _ _ _ _ AN530  
SM95 _ _ _ _ _ _ AN530  
SM96 _ _ _ _ _ _ AN530  
AVX  
STYLE  
50V 100V 200V 500V 50V 100V 200V 500V 50V 100V 200V 500V 50V 100V 200V 500V 50V 100V 200V 500V 50V 100V 200V 500V  
3.0 2.1 1.2 .54 3.6 3.0 1.8 .78 1.5 1.2 .60 .27 .48 .39 .21 .07 .15 .12 .07 .03 9.6 7.2 3.9 1.5  
C0G  
82 36 21 7.8 120 54 33 12 54 18 10 3.9 22 5.4 3.3 1.2 8.2 2.0 1.2 .48 240 120 72 28  
250 96 36 – – 350 130 100 – – 120 45 18 – – 36 13 9.0 – – 13 5.4 2.1 – – 780 430 270 – –  
X7R  
Z5U  
Max Capacitance (µF) Available Versus Style with Height of 0.660" - 16.76mm  
SM91 _ _ _ _ _ _ AN660  
SM92 _ _ _ _ _ _ AN660  
SM93 _ _ _ _ _ _ AN660  
SM94 _ _ _ _ _ _ AN660  
SM95 _ _ _ _ _ _ AN660  
SM96 _ _ _ _ _ _ AN660  
AVX  
STYLE  
50V 100V 200V 500V 50V 100V 200V 500V 50V 100V 200V 500V  
50V 100V 200V 500V 50V 100V 200V 500V 50V 100V 200V 500V  
.64 .52 .28 .10 .20 .16 .10 .04 12 9.6 5.2 2.0  
4.0 2.8 1.6 .72 4.8 4.0 2.4 1.0 2.0 1.6 .80 .36  
C0G  
30 7.2 4.4 1.6 10 2.7 1.6 .64 320 160 96 37  
48 18 12 – – 18 7.2 2.8 – – 1000 570 360 – –  
110 48 28 10 160 72 44 16 72 24 14 5.2  
330 120 48 – – 470 180 130 – – 160 60 24 – –  
X7R  
Z5U  
Max Capacitance (µF) Available Versus Style with Height of 0.800" - 20.3mm  
SM91 _ _ _ _ _ _ AN800  
SM92 _ _ _ _ _ _ AN800  
SM93 _ _ _ _ _ _ AN800  
SM94 _ _ _ _ _ _ AN800  
SM95 _ _ _ _ _ _ AN800  
SM96 _ _ _ _ _ _ AN800  
AVX  
STYLE  
50V 100V 200V 500V 50V 100V 200V 500V 50V 100V 200V 500V  
50V 100V 200V 500V 50V 100V 200V 500V 50V 100V 200V 500V  
5.0 3.5 2.0 .90 6.0 5.0 3.0 1.3 2.5 2.0 1.0 .45  
.80 .65 .35 .12 .25 .20 .12 .05 16 12 6.5 2.5  
C0G  
130 60 35 13 200 90 55 20 90 30 18 6.5  
420 160 60 – – 590 230 170 – – 200 75 30 – –  
X7R  
Z5U  
36 9.0 5.5 2.0 12 3.4 2.0 .80 400 200 120 47  
60 23 15 – – 23 9.0 3.6 – – 1300 720 460 – –  
28  
SMPS Capacitors Chip Assemblies  
CH/CV - Radial, Dual-in-Line,  
4 Terminal/SMT ‘J’ & ‘L’ Ranges  
European Preferred Styles  
10nF to 180 µF  
50V to 500 VDC  
-55ºC to +125ºC  
BS9100 approved  
Low ESR/ESL  
1B/C0G and 2C1/X7R Dielectrics  
This range allows SMPS engineers to select the best volumetric  
solution for input and output filter applications in high reliability designs.  
Utilizing advanced multilayer ceramic techniques to minimize ESR/ESL  
giving high current handling properties appropriate for filtering,  
smoothing and decoupling circuits.  
ELECTRICAL SPECIFICATIONS  
Temperature Coefficient CECC 30 000, (4.24.1)  
Dielectric Withstanding Voltage 25°C (Flash Test)  
1B/C0G: A Temperature Coefficient - 0 ± 30 ppm/ºC, -55º to +125ºC  
2C1/X7R: C Temperature Characteristic - ± 15%, -55º to +125ºC  
1B/C0G & 2C1/X7R: 250% rated voltage for 5 seconds with 50 mA  
max charging current. (500 Volt units @ 150% rated voltage)  
Capacitance Test 25ºC  
1B/C0G: Measured at 1 VRMS max at 1KHz (1MHz for 100 pF or less)  
2C1/X7R: Measured at 1 VRMS max at 1KHz  
Life Test (1000 hrs) CECC 30 000 (4.23)  
1B/C0G & 2C1/X7R: 200% rated voltage at +125ºC.  
(500 Volt units @ 120% rated voltage)  
Dissipation Factor 25°C  
Damp Heat IEC 68-2-3, 56 days.  
1B/C0G: 0.15% max at 1KHz, 1 VRMS max (1MHz for 100 pF or less)  
2C1/X7R: 2.5% max at 1KHz, 1 VRMS max  
Thermal Shock IEC 68-2-14  
-55ºC to +125ºC, 5 cycles  
Insulation Resistance 25°C  
1B/C0G & 2C1/X7R: 100K megohms or 1000 megohms-µF, whichever  
is less  
Resistance to Solder Heat IEC 68-2-20  
Vibration IEC 68-2-6  
10Hz - 2000Hz, 0.75mm or 98m/sec , 6 hrs.  
2
Dielectric Withstanding Voltage 25°C (Flash Test)  
1B/C0G & 2C1/X7R: 250% rated voltage for 5 seconds with 50 mA max  
charging current. (500 Volt units @ 150% rated voltage)  
Bump IEC 68-2-29  
2
390m/sec , 4000 bumps  
MARKING  
CH and CV 4x, 5x, 81-84  
Top line A (AVX). Voltage code, dielectric code.  
Middle line capacitance code, tolerance code.  
Bottom line 6 digit batch code.  
A5C  
225K  
xxxxxx  
Other CH, CV Styles  
AVX  
5C  
156M  
xxxxxx  
Top line AVX.  
Second line voltage code, dielectric code.  
Third line capacitance code, tolerance code.  
Bottom line, 6 digit batch code.  
29  
SMPS Capacitors (CV Style)  
Chip Assemblies  
European Preferred Styles  
VERTICALLY MOUNTED RADIAL PRODUCT  
DIMENSIONS  
millimeters (inches)  
Lead  
Part Number format (CVxxxxxxxxxxxA2)  
Typical Part Number CV525C106MA30A2  
L
H
S
Style  
Dia  
(max)  
(max)  
(nom)  
(nom)  
CV41-44  
CV51-54  
10.6 (0.417)  
11.9 (0.468)  
16.5 (0.649)  
17.8 (0.700)  
22.7 (0.893)  
8.7 (0.342)  
10.7 (0.421)  
13.6 (0.535)  
21.6 (0.850)  
16.6 (0.653)  
8.2 (0.322)  
10.2 (0.400)  
15.2 (0.600)  
15.2 (0.600)  
21.2* (0.834)  
0.7 (0.028)  
0.9 (0.035)  
0.9 (0.035)  
0.9 (0.035)  
0.9 (0.035)  
T Max.  
L Max.  
CV61-64  
CV71-74  
H Max.  
CV76-79  
*Tolerance 0.8  
millimeters (inches)  
25 (0.984)  
±3 (0.118)  
Style  
T max  
Lead Dia.  
See Table  
CV41/51/61/71/76  
CV42/52/62/72/77  
CV43/53/63/73/78  
CV44/54/64/74/79  
3.80 (0.150)  
7.40 (0.291)  
11.1 (0.437)  
14.8 (0.583)  
S ±0.5  
(0.020)  
VERTICALLY MOUNTED 4 TERMINAL RADIAL PRODUCT  
DIMENSIONS  
millimeters (inches)  
Lead  
Part Number format (CVxxxxxxxxx3xx4)  
Typical Part Number CV435C106MA30A4  
L
Style  
H
S
Dia  
(max)  
(max)  
(nom)  
(nom)  
CV43-44  
CV53-54  
CV63-64  
CV73-74  
CV78-79  
10.6 (0.417)  
11.9 (0.468)  
16.5 (0.649)  
17.8 (0.700)  
22.7 (0.893)  
8.7 (0.342)  
10.7 (0.421)  
13.6 (0.535)  
21.6 (0.850)  
16.6 (0.653)  
8.2 (0.322)  
10.2 (0.400)  
15.2 (0.600)  
15.2 (0.600)  
21.2* (0.834)  
0.7 (0.028)  
0.9 (0.035)  
0.9 (0.035)  
0.9 (0.035)  
0.9 (0.035)  
T Max.  
M1 = M2 ±0.5 (0.020)  
H Max.  
L Max.  
*Tolerance 0.8 (0.031)  
25 (0.984)  
±3 (0.118)  
Lead Dia.  
See Table  
millimeters (inches)  
S1  
M1  
M2  
Style  
T max  
S1 ±0.5  
(0.020)  
S1 ±0.5  
(0.020)  
CV43/53/63/73/78  
CV44/54/64/74/79  
11.1 (0.437)  
14.8 (0.583)  
5.08 (0.200)  
7.62 (0.300)  
Note 1. This style is only available in 3 & 4 chip assemblies  
HOW TO ORDER  
CV  
52  
5
C
106  
M
A
3
0
A
2
Style  
Code  
Size Voltage Dielectric Capacitance Capacitance Specification  
Finish  
Code  
Lead Dia.  
Code  
Lead Space  
Code  
A = Standard  
Lead Style  
Code  
2 = 2 Terminal  
4 = 4 Terminal  
See Note 1  
above  
Code Code  
Code  
Code  
(2 significant  
digits + no.  
of zeros)  
Tolerance  
Code  
(see product section)  
5 = 50V  
A = C0G  
C = X7R  
J = ±5%  
K = ±10%  
M = ±20%  
P = -0 +100%  
A = Non-customized 3 = Uncoated 0 = Standard  
1 = 100V  
2 = 200V  
7 = 500V  
8 = Coated  
(classified as  
uninsulated)  
eg. 105 = 1 µF  
106 = 10 µF  
107 = 100 µF  
Note: See page 91 for How to Order BS9100 parts  
30  
SMPS Capacitors (CH Style)  
Chip Assemblies  
European Preferred Styles  
HORIZONTALLY MOUNTED 4 TERMINAL RADIAL PRODUCT  
DIMENSIONS  
millimeters (inches)  
S Lead  
Part Number format (CHxxxxxxxxx3xx4)  
Typical Part Number CH782C106MA30A4  
L
W
S
S1  
Style  
Dia  
(max)  
(max)  
(nom)  
(nom)  
W max  
L max  
(nom)  
CH42-44  
CH52-54  
CH62-64  
CH72-74  
CH77-79  
CH82-84  
CH87-89  
CH92-94  
10.6 (0.417)  
11.9 (0.468)  
16.5 (0.649)  
17.8 (0.700)  
22.7 (0.893)  
14.1 (0.555)  
17.8 (0.700)  
22.7 (0.893)  
8.7 (0.342)  
10.7 (0.421)  
13.6 (0.535)  
21.6 (0.850)  
16.6 (0.653)  
38.2 (1.503)  
38.2 (1.503)  
40.6 (1.598)  
8.2 (0.322)  
10.2 (0.400)  
15.2 (0.600)  
15.2 (0.600)  
21.2* (0.834)  
10.2 (0.400)  
15.2 (0.600)  
21.2* (0.834)  
0.7 (0.028)  
0.9 (0.035)  
0.9 (0.035)  
0.9 (0.035)  
0.9 (0.035)  
0.9 (0.035)  
1.0 (0.039)  
1.2 (0.047)  
5.08 (0.200)  
7.62 (0.300)  
7.62 (0.300)  
15.2 (0.600)  
10.2 (0.400)  
27.9 (1.100)  
27.9 (1.100)  
30.5 (1.200)  
T max  
Lead dia  
(see table)  
25 (0.984)  
±3 (0.118)  
*Tolerance 0.8  
M1  
M2  
NOTE: This style is only available in 2, 3 & 4 chip assemblies only  
millimeters (inches)  
Style  
T max  
7.4 (0.291)  
11.1 (0.437)  
14.8 (0.583)  
S1± 0.5  
(0.020)  
S± 0.5  
CH42/52/62/72/77/87/92  
CH43/53/63/73/78/88/93  
CH44/54/64/74/79/89/94  
(0.020)  
M1 = M2 ± 0.5 (0.020)  
HORIZONTALLY MOUNTED DUAL-IN-LINE PRODUCT  
Part Number format (CHxxxxxxxxxx0A0)  
DIMENSIONS  
millimeters (inches)  
No. of  
Typical Part Number CH615C106MA30A0  
L
W
S
Style  
Leads  
(max)  
(max)  
(nom)  
per side  
CH41-44 9.2 (0.362) 8.7 (0.342)  
CH51-54 10.7 (0.421) 10.7 (0.421)  
CH61-64 14.9 (0.586) 13.6 (0.535)  
CH71-74 16.8 (0.661) 21.6 (0.850)  
CH76-79 21.6 (0.850) 16.6 (0.653) 20.3* (0.800)  
CH81-84 12.0 (0.472) 38.2 (1.503)  
CH86-89 18.9 (0.744) 38.2 (1.503)  
8.2 (0.322)  
10.2 (0.400)  
14.0 (0.551)  
15.2 (0.600)  
3
4
5
7
6
W max  
L max  
2.0 (0.079)  
max  
T
max  
10.2 (0.400) 14  
15.2 (0.600) 14  
CH91-94 24.0 (0.944) 40.6 (1.598) 20.3* (0.800) 14  
*Tolerance 0.8 (0.031)  
13  
(0.512)  
S±0.5  
(0.020)  
±
1 (0.039)  
millimeters (inches)  
Style  
T max  
3.8 (0.150)  
7.4 (0.291)  
L2  
L1  
CH41/51/61/71/76/81/86/91  
CH42/52/62/72/77/82/87/92  
CH43/53/63/73/78/83/88/93 11.1 (0.437)  
CH44/54/64/74/79/84/89/94 14.8 (0.583)  
2.54 (0.100)  
± 0.05 (0.002)  
Lead width 0.5 (0.020)  
Lead thickness 0.254 (0.100)  
L1 = L2 ± 0.5 (0.020)  
HOW TO ORDER  
CH  
52  
5
C
106  
M
A
3
0
A
0
Style  
Code  
Size Voltage Dielectric Capacitance Capacitance Specification  
Finish  
Code  
Lead Dia.  
Code  
0 = Standard  
Lead Space  
Code  
Lead Style  
Code  
Code Code  
Code  
Code  
(2 significant  
digits + no.  
of zeros)  
Tolerance  
Code  
(see product section)  
5 = 50V  
A = C0G  
C = X7R  
J = ±5%  
K = ±10%  
M = ±20%  
P = -0 +100%  
A = Standard 0 = Straight dual  
in line  
A = Non-customized 3 = Uncoated  
8 = Coated  
1 = 100V  
2 = 200V  
7 = 500V  
4 = 4 Terminal  
(classified as  
uninsulated)  
eg. 105 = 1 µF  
106 = 10 µF  
107 = 100 µF  
Note: See page 91 for How to Order BS9100 parts  
31  
SMPS Capacitors (CH Style)  
Chip Assemblies  
European Preferred Styles  
HORIZONTALLY MOUNTED ‘L’ LEAD SMT PRODUCT  
DIMENSIONS  
millimeters (inches)  
No. of  
Part Number format (CHxxxxxxxxxx0A7)  
Typical Part Number CH411C275KA30A7  
L
W
S
Style  
Leads  
(max)  
(max)  
(nom)  
per side  
W max  
CH41-44 9.2 (0.362) 8.7 (0.342)  
8.2 (0.322)  
3
4
CH51-54 10.7 (0.421) 10.7 (0.421) 10.2 (0.400)  
CH61-64 14.9 (0.586) 13.6 (0.535) 14.0 (0.551)  
CH71-74 16.8 (0.661) 21.6 (0.850) 15.2 (0.600)  
CH76-79 21.6 (0.850) 16.6 (0.653) 20.3* (0.800)  
CH81-84 12.0 (0.472) 38.2 (1.503) 10.2 (0.400)  
CH86-89 18.9 (0.744) 38.2 (1.503) 15.2 (0.600)  
CH91-94 24.0 (0.944) 40.6 (1.598) 20.3* (0.800)  
*Tolerance 0.8 (0.031)  
2.54 (0.1)  
± 0.5 (0.02)  
5
7
6
14  
14  
14  
T max  
L
max  
S± 0.5 (0.02)  
2.54 (0.1)  
± 0.5 (0.02)  
NOTE: A ‘L’ lead low profileversion  
millimeters (inches)  
(CH....0A5) is available with lead height  
1.1 (0.043) max. for single chip assemblies eg.  
CH415C225MA30A5  
Style  
T max  
L2  
L1  
CH41/51/61/71/76/81/86/91  
CH42/52/62/72/77/82/87/92  
CH43/53/63/73/78/83/88/93  
CH44/54/64/74/79/84/89/94  
3.8 (0.150)  
7.4 (0.291)  
11.1 (0.437)  
14.8 (0.583)  
Lead width 0.5 (0.020)  
Lead thickness 0.254 (0.010)  
L1 = L2 ± 0.5 (0.020)  
HORIZONTALLY MOUNTED ‘J’ LEAD SMT PRODUCT  
Part Number format (CHxxxxxxxxxx0A8)  
Typical Part Number CH411C275KA30A8  
DIMENSIONS  
millimeters (inches)  
No. of  
L
W
S
Style  
Leads  
L1  
L2  
(max)  
(max)  
(nom)  
2.54 (0.100)  
± 0.5 (0.020)  
per side  
CH41-44 9.2 (0.362) 8.7 (0.342)  
CH51-54 10.7 (0.421) 10.7 (0.421)  
CH61-64 14.9 (0.586) 13.6 (0.535)  
CH71-74 16.8 (0.661) 21.6 (0.850)  
8.2 (0.322)  
10.2 (0.400)  
14.0 (0.551)  
15.2 (0.600)  
3
4
5
7
6
T max  
L
max  
CH76-79 21.6 (0.850) 16.6 (0.653) 20.3* (0.800)  
S± 0.5 (0.020)  
CH81-84 12.0 (0.472) 38.2 (1.503)  
CH86-89 18.9 (0.744) 38.2 (1.503)  
10.2 (0.400) 14  
15.2 (0.600) 14  
CH91-94 24.0 (0.944) 40.6 (1.598) 20.3* (0.800) 14  
*Tolerance 0.8 (0.031)  
W max  
2.54 (0.100)  
± 0.5 (0.020)  
millimeters (inches)  
Style  
T max  
NOTE: A ‘J’ lead low profileversion (CH....0A3) is available with lead height  
1.1 (0.043) max. for single chip assemblies eg. CH515C475MA30A3  
CH41/51/61/71/76/81/86/91  
CH42/52/62/72/77/82/87/92  
CH43/53/63/73/78/83/88/93  
CH44/54/64/74/79/84/89/94  
3.8 (0.150)  
7.4 (0.291)  
11.1 (0.437)  
14.8 (0.583)  
Lead width 0.5 (0.020)  
Lead thickness 0.254 (0.010)  
L1 = L2 ± 0.5 (0.020)  
HOW TO ORDER  
CH  
52  
5
C
106  
M
A
3
0
A
7
Style  
Code  
Size Voltage Dielectric Capacitance Capacitance Specification  
Finish  
Code  
Lead Dia. Lead Space  
Lead Style  
Code  
3 = Low profile ‘J’  
(single chip)  
5 = Low profile ‘L’  
(single chip)  
7 = ‘LDual in line  
8 = ‘J’ Dual in line  
Code Code  
Code  
Code  
(2 significant  
digits + no.  
of zeros)  
Tolerance  
J = ±5%  
Code  
Code  
Code  
(see product section)  
5 = 50V  
A = C0G  
C = X7R  
0 = Standard  
A = Standard  
A = Non-customized 3 = Uncoated  
8 = Coated  
1 = 100V  
2 = 200V  
7 = 500V  
K = ±10%  
M = ±20%  
P = -0 +100%  
(classified as  
uninsulated)  
eg. 105 = 1 µF  
106 = 10 µF  
107 = 100 µF  
Note: See page 91 for How to Order BS9100 parts  
32  
SMPS Capacitors (CH/CV Style)  
Chip Assemblies  
European Preferred Styles  
C0G DIELECTRIC ULTRA STABLE CERAMIC  
CH/CV41-44  
CH/CV51-54  
CH/CV61-64  
CH/CV71-74  
CH/CV76-79  
CH81-84  
Styles  
CH86-89  
Styles  
CH91-94  
Styles  
Styles  
Styles  
Styles  
Styles  
Styles  
Voltage DC  
Cap µF 50 100 200 500 50 100 200 500 50 100 200 500 50 100 200 500 50 100 200 500 50 100 200 500 50 100 200 500 50 100 200 500  
0.01  
0.012  
0.015  
0.018  
0.022  
0.027  
0.033  
0.039  
0.047  
0.056  
0.068  
0.082  
0.1  
41  
41  
41  
41  
42  
51  
42  
51  
52  
41 42  
61  
61  
41 42  
52  
41 41 43  
41 41 43  
41 41 41 44  
41 41 42  
41 42 42  
42 42 42  
42 42 42  
42 42 43  
42 43 43  
43 43 44  
43 44  
52  
61  
52  
61  
51 53  
51 53  
51 51 54  
62  
71  
76  
81  
62  
71  
76  
81  
62  
71  
72  
76  
77  
81  
81  
0.12  
0.15  
0.18  
0.22  
0.27  
0.33  
0.39  
0.47  
0.56  
0.68  
0.82  
1
51 51 52  
61 62  
86  
86  
51 52 52  
51 52 52  
52 52 52  
52 52 53  
52 53 53  
52 53 54  
53 54  
61 61 63  
61 61 63  
61 61 62 64  
61 62 62  
61 62 62  
62 62 62  
62 62 63  
62 63 63  
62 63 64  
63 64  
72  
77  
81  
72  
77  
82  
86  
71 72  
71 71 73  
71 71 73  
76 77  
76 76 78  
76 76 78  
81 82  
81 81 82  
81 81 82  
86  
91  
91  
87  
87  
91  
44  
71 71 72 74 76 76 77 79 81 81 81 83  
86 87  
92  
71 71 72  
71 72 72  
72 72 72  
72 72 73  
72 72 73  
72 73 74  
73 73  
76 76 77  
76 77 77  
77 77 77  
77 77 78  
77 77 78  
77 78 79  
78 78  
81 81 81 83  
81 81 82 84  
81 82 82  
82 82 82  
82 82 82  
82 82 83  
82 83 83  
83 83 84  
83 84  
86 87  
92  
53  
86 86 88  
86 86 86 88  
86 86 87 89  
86 87 87  
87 87 87  
87 87 87  
87 87 88  
87 88 88  
88 88 89  
88 89  
92  
54  
92  
91 93  
63 64  
91 91 93  
91 91 92 94  
91 92 92  
92 92 92  
92 92 92  
92 92 93  
92 93 93  
93 93 94  
93 94  
1.2  
64  
1.5  
1.8  
73 74  
78 79  
2.2  
74  
79  
2.7  
84  
3.3  
3.9  
89  
4.7  
5.6  
94  
NB Figures in cells refer to size within ordering information  
33  
SMPS Capacitors (CH/CV Style)  
Chip Assemblies  
European Preferred Styles  
X7R DIELECTRIC STABLE CERAMIC  
CH/CV41-44  
CH/CV51-54  
CH/CV61-64  
CH/CV71-74  
CH/CV76-79  
Styles  
CH81-84  
Styles  
CH86-89  
Styles  
CH91-94  
Styles  
Styles  
Styles  
Styles  
Styles  
Voltage DC  
Cap µF 50 100 200 500 50 100 200 500 50 100 200 500 50 100 200 500 50 100 200 500 50 100 200 500 50 100 200 500 50 100 200 500  
0.12  
0.15  
0.18  
0.22  
0.27  
0.33  
0.39  
0.47  
0.56  
0.68  
0.82  
1
41  
41  
41  
41  
42  
51  
51  
41 42  
41 42  
41 42  
41 43  
42 43  
42 44  
41 42 44  
41 42  
41 43  
51  
52  
61  
61  
52  
51 52  
51 52  
51 53  
52 53  
52 54  
52  
61  
61  
71  
71  
76  
76  
81  
81  
61 62  
61 62  
61 62  
61 62  
61 63  
62 63  
62 64  
62  
1.2  
1.5  
1.8  
2.2  
2.7  
3.3  
3.9  
4.7  
5.6  
6.8  
8.2  
10  
71  
76  
81  
71  
76  
81  
86  
86  
41 41 43  
72  
77  
82  
41 41 44  
41 41  
41 42  
42 42  
42 42  
42 42  
42 43  
43 43  
43 44  
44  
51 52  
71 72  
71 72  
71 72  
72 73  
72 73  
72 74  
72  
76 77  
76 77  
76 77  
77 78  
77 78  
77 79  
77  
81 82  
81 82  
81 82  
81 83  
82 83  
82 84  
82  
86  
51 53  
51 53  
51 51 54  
51 52  
51 52  
52 52  
52 52  
52 53  
53 53  
53 54  
54  
87  
91  
91  
87  
86 87  
86 87  
86 88  
86 88  
87 89  
87  
91  
61 62  
91  
61 63  
61 61 63  
61 61 64  
61 62 64  
62 62  
92  
92  
71 73  
76 78  
82  
91 92  
91 92  
92 93  
92 93  
92 94  
92  
71 73  
71 71 74  
71 71  
71 72  
72 72  
72 72  
72 73  
72 73  
73 74  
73  
76 78  
76 76 79  
76 76  
76 77  
77 77  
77 77  
77 78  
77 78  
78 79  
78  
83  
12  
81 83  
87  
15  
62 62  
81 81 84  
81 81  
81 82  
82 82  
82 82  
82 82  
82 83  
83 83  
83 84  
84  
86 87  
18  
62 63  
86 88  
86 86 88  
86 86 89  
86 87  
22  
54  
62 63  
27  
63 64  
93  
33  
63 64  
91 93  
39  
64  
87 87  
91 91 94  
91 92  
92 92  
92 92  
92 92  
92 93  
93 93  
93 94  
94  
47  
87 87  
56  
87 87  
68  
74  
79  
87 88  
82  
88 88  
100  
120  
150  
180  
88 89  
89  
NB Figures in cells refer to size within ordering information  
34  
SMPS Capacitors (RH Style)  
RH - Surface Mount ‘J’ Lead Range  
European Preferred Styles  
0.1 µF to 10.0 µF  
Low ESR/ESL  
2C1/X7R Dielectric  
50V to 500 VDC  
-55ºC to +125ºC  
This range of uncoated MLC capacitors are processed for  
input and output filter capacitors in high frequency DC-DC  
convertor applications above 10 Watts e.g. telecomms and  
instrumentation, where high volume and low cost is required.  
These products are available in surface mount ‘J’ leaded  
versions and can be supplied in bulk and tape/reel packaging.  
ELECTRICAL SPECIFICATIONS  
Temperature Coefficient CECC 30 000, (4.24.1)  
Typical ESR (m) 3 µF, 100V X7R  
ESR @ 100KHz  
ESR @ 500KHz  
ESR @ 1MHz  
17  
12  
14  
2C1/X7R: C Temperature Characteristic - ± 15%, -55ºC to +125ºC  
Capacitance Test  
2C1/X7R: Measured at 1 VRMS max at 1KHz  
DIMENSIONS  
millimeters (inches)  
No. of leads  
Dissipation Factor 25°C  
2C1/X7R: 2.5% max at 1KHz, 1 VRMS max  
S ± 0.1  
(±0.004)  
Style L max  
W max H max  
h
per side  
Insulation Resistance 25°C  
2C1/X7R: 100K megohms or 1000 megohms-µF, whichever is less  
1.50 ±0.30  
(0.059 ±0.012)  
RH21  
RH22  
RH31  
RH32  
RH41  
RH42  
RH51  
RH52  
RH61  
RH62  
7.62 (0.300) 5.40 (0.213) 4.60 (0.181) 2.50 (0.098)  
7.62 (0.300) 5.40 (0.213) 7.50 (0.295) 2.50 (0.098)  
7.62 (0.300) 7.00 (0.270) 5.08 (0.200) 5.08 (0.200)  
7.62 (0.300) 7.00 (0.270) 8.13 (0.320) 5.08 (0.200)  
9.20 (0.362) 8.70 (0.342) 4.90 (0.192) 5.08 (0.200)  
9.20 (0.362) 8.70 (0.342) 8.20 (0.323) 5.08 (0.200)  
10.7 (0.421) 10.7 (0.421) 4.90 (0.192) 7.62 (0.300)  
10.7 (0.421) 10.7 (0.421) 8.20 (0.323) 7.62 (0.300)  
14.9 (0.586) 13.6 (0.535) 4.90 (0.192) 10.2 (0.400)  
14.9 (0.586) 13.6 (0.535) 8.20 (0.323) 10.2 (0.400)  
2
1.50 ±0.30  
(0.059 ±0.012)  
Dielectric Withstanding Voltage 25°C (Flash Test)  
2C1/X7R: 250% rated voltage for 5 seconds with 50 mA max  
charging current. (500 Volt units @ 150% rated voltage)  
2
1.78 ±0.25  
(0.070 ±0.010)  
3
1.78 ±0.25  
(0.070 ±0.010)  
3
Life Test (1000 hrs) CECC 30 000 (4.23)  
2C1/X7R: 200% rated voltage at +125ºC.  
(500 Volt units @ 120% rated voltage)  
1.60 ±0.10  
(0.062 ±0.004)  
3
1.60 ±0.10  
(0.062 ±0.004)  
3
Thermal Shock IEC 68.2.14  
-55ºC to +125ºC, 5 cycles  
1.60 ±0.10  
(0.062 ±0.004)  
4
Resistance to Solder Heat IEC 68.2.20  
1.60 ±0.10  
(0.062 ±0.004)  
4
1.60 ±0.10  
(0.062 ±0.004)  
5
1.60 ±0.10  
(0.062 ±0.004)  
5
DIMENSIONS millimeters (inches)  
0.6 (0.024)  
±0.1 (0.004)  
L Max.  
W Max.  
M1  
M1 = M2 ±0.5 (0.020)  
H Max.  
h
M2  
2.54 (0.100)  
1.4 (0.055) Typ.  
±0.05 (0.002)  
1.65 (0.065) ±0.15 (0.006)  
Non-Accum.  
0.25 (0.010)Typ.  
S
Bend Radius  
90° ±5°  
35  
SMPS Capacitors (RH Style)  
RH - Surface Mount ‘J’ Lead Range  
European Preferred Styles  
2C1/X7R STABLE DIELECTRIC  
RH21/RH22  
Style  
RH31/RH32  
Style  
RH41/RH42  
Style  
RH51/RH52  
Style  
RH61/RH62  
Style  
Voltage DC  
Cap µF  
50  
100  
200 500  
50  
100  
200  
500  
50  
100  
200  
500  
50  
100  
200  
500  
50  
100  
200 500  
0.047  
0.056  
0.068  
0.082  
0.1  
RH31  
0.12  
0.15  
0.18  
0.22  
0.27  
0.33  
0.39  
0.47  
0.56  
0.68  
0.78  
0.82  
1
1.2  
1.5  
1.8  
2.2  
2.7  
3
3.3  
3.9  
RH32  
RH41  
RH42  
RH31  
RH32  
RH51  
RH52  
RH41  
RH42  
RH61  
RH62  
RH51  
RH52  
RH31  
RH32  
RH21  
RH22  
RH31  
RH32  
RH61  
RH41  
RH42  
RH41  
RH42  
RH51  
RH52  
RH62  
RH51  
RH52  
4.4  
4.7  
5.6  
6.8  
8.2  
10  
12  
15  
RH61  
RH62  
RH61  
RH62  
18  
22  
27  
For availability of further parts in the RH21/RH22 Series, contact manufacturing.  
PACKAGING  
Style  
RH21  
RH22  
RH31  
RH32  
RH41  
RH42  
RH51  
RH52  
RH61  
RH62  
Qty/Reel 13"  
see note  
see note  
800  
500  
800  
see note  
750  
see note  
500  
Max. Qty/Waffle Pack  
270  
270  
108  
108  
108  
100  
88  
100  
126  
42  
see note  
Note: T&R is not yet available. Contact manufacturing for further information as this will be available in the future.  
HOW TO ORDER  
RH  
31  
5
C
225  
M
A
3
0
A
3
Style  
Code  
Size Voltage Dielectric Capacitance Capacitance Specification  
Package  
Code  
3 = Waffle Pack  
A = Tape & Reel  
Lead Dia.  
Code  
0 = Standard  
Lead Space  
Code  
A = Standard  
Lead Style  
Code  
3 = ‘J’ Lead  
Code Code  
Code  
Code  
(2 significant  
digits + no.  
of zeros)  
Tolerance  
Code  
(see table above)  
5 = 50V  
C = X7R  
K = ±10%  
M = ±20%  
A = Non  
customized  
1 = 100V  
2 = 200V  
7 = 500V  
eg. 105 = 1 µF  
104 = 0.1 µF  
36  
SMPS Capacitors  
Assembly Guidelines  
If bonding the SupraCap® to the board with adhesive, consider-  
ation of the CTE (coefficient of thermal expansion) is necessary.  
A mismatch between the CTE of the ceramic and adhesive can  
cause the ceramic to crack during temperature cycles.  
Reliability  
AVX has been involved in numerous military and customer High  
Reliability programs for over 40 years.  
Reliability [% Failure Rate (FR%) or Mean Time Between Failure  
(MTBF)] is based on the number of failures and the cumulative  
test hours expanded by test versus use acceleration factors. The  
acceleration factors are calculated according to the following  
relationships:  
Processing Guidelines*  
There are practical size limitations for MLCs which prohibit reli-  
able direct mounting of chip capacitors larger than 2225 (.22" x  
.25") to a substrate. These large chips are subject to thermal  
shock cracking and thermal cycling solder joint fatigue. Even  
1812 (.18" x .12") and 2225 chip capacitors will have solder joint  
failures due to mechanical fatigue after 1500 thermal cycles  
from 0 to 85°C on FR4 and 3000 cycles on alumina from -55  
to 125°C. This is due to differences in the Coefficient of Thermal  
Expansion (CTE) between MLCs and substrate materials used in  
hybrids and surface mount assemblies. Materials used in the  
manufacture of all electronic components and substrates have  
wide ranges of CTEs as shown in Table 1.  
T
– T  
25  
T
U
Temperature  
Acceleration  
Where:  
= 10  
T
T
= test temp. (°C)  
= use temp. (°C)  
T
U
Voltage  
Acceleration  
V
V
3
Where:  
T
u
=
V
V
= test voltage  
= use voltage  
T
U
Military Reliability levels are usually expressed in terms of rated  
conditions versus test conditions (generally 125°C and 2X  
WVDC). If actual conditions are less than rated, the reliability lev-  
els will improve significantly over rated and can be calculated by  
use of the above relationship for determining accelerated test  
hours. For example, if the actual use conditions were 75°C and  
1/2 WVDC rating for a 125°C rated part, the acceleration factors  
are 64X for voltage and 100X for temperature. Reliabilities based  
on current testing can be obtained by contacting AVX.  
Table I  
CTEs of Typical Components and Substrates  
Material  
CTE (ppm/°C)  
5.3  
Alloy 42  
Alumina  
7  
Barium Titanate Capacitor Body  
Copper  
10-12  
17.6  
6-7  
General Processing Guidelines  
Soldering  
Copper Clad Invar  
Filled Epoxy Resin (<T )  
18-25  
18  
15  
R
FR4/G-10 PC Board (X, Y)  
Nickel or Steel  
The SM styles capacitors are generally quite large relative to  
other types of MLC capacitors. As a result of the size, precau-  
tions must be taken before subjecting the parts to any soldering  
operation in order to prevent thermal shock. Preheat prior to sol-  
dering is essential. The heating rate of the SupraCap® ceramic  
bodies during preheat must not exceed 4°C/second. The preheat  
temperature must be within 50°C of the peak temperature  
reached by the ceramic bodies, adjacent to lead material, through  
the soldering process. The leads are attached to the chip stack  
with 10 / 88 / 2 (Sn / Pb / Ag, Solidus 268°C, Liquidus 290°C).  
Polyimide/Glass PCB (X, Y)  
Polyimide/Kevlar PCB (X, Y)  
Tantalum  
12  
7  
6.5  
Tin Lead Alloys  
27  
Linear Displacement  
This CTE difference translates into mechanical stress that is  
due to the linear displacement of substrate and component. Linear  
displacement is a function of CTE (CTE  
– CTE ) and the  
Vibration Specifications*  
sub  
comp  
overall length of the component. Long components/ substrates  
have large linear displacements even with a small CTE which will  
cause high stress in the solder joints and fatigue after a few tem-  
perature cycles. Figure 1 shows linear displacement for conditions  
where CTE is positive and negative.  
Due to the weight of the SupraCap® and the size and strength of  
the lead frame used, when the SupraCap® is to be used in an  
application where it will undergo high frequency vibration, we  
strongly recommend using our potted SM9 styles SupraCap®.  
If other DIP styles SupraCap® are to be used in a high frequency  
vibration environment, the SupraCap® should be supported in  
some way to prevent oscillation of the capacitor assembly which  
will result in lead breakage. If “strapping” the SupraCap® to the  
board is the chosen method of support, care should be taken  
not to chip the ceramic or apply undue pressure so that crack-  
ing of the ceramic results.  
* Reference AVX Technical Information paper, Processing Guidelines for  
SMPS Capacitors.”  
37  
SMPS Capacitors  
Assembly Guidelines  
DIMENSIONS  
AT AMBIENT  
TEMPERATURE  
CAPACITOR  
"J" LEADS  
"L" LEADS  
CAPACITOR  
BODY  
CAPACITOR  
BODY  
SUBSTRATE  
SUBSTRATE LINEAR  
DISPLACEMENT  
PUTS SOLDER JOINT  
AND CAPACITOR IN  
TENSION  
SOLDER  
FILLETS  
CAPACITOR  
SUBSTRATE  
SOLDER LAND  
T
> T  
CTE  
> CTE  
sub cap  
oper  
amb  
SUBSTRATE  
SUBSTRATE LINEAR  
DISPLACEMENT  
PUTS SOLDER JOINT  
AND CAPACITOR IN  
COMPRESSION  
CAPACITOR  
SUBSTRATE  
Figure 3. “J” and “L” Leadframes Mounted on  
Capacitors to Relieve Stress  
T
> T  
CTE  
< CTE  
sub cap  
oper  
amb  
Figure 1. Linear Displacement Between  
Component and Substrate  
Inductance  
Adding leadframes has a small impact on component induc-  
tance but this is the price that must be paid for reliable operation  
over temperature. Figure 4 shows typical leadframe inductance  
that is added for two lead standoff distances (0.020" and 0.050")  
General Processing Guidelines  
Figure 2 shows the location of maximum stress in the solder  
joint due to positive and negative DCTE and linear displace-  
ment.  
®
versus the number of leads along one side of SupraCap which  
SOLDER  
FILLET  
are specifically designed output filter capacitors for 1 MHz and  
above switchers. The actual inductance will be somewhat less  
because the leadframes flare out from the lead where the lead-  
frame is attached to the capacitor body.  
CAPACITOR  
MAXIMUM STRESS  
SUBSTRATE  
0.4  
0.3  
Stress for T  
> T  
CTE  
> CTE  
sub cap  
oper  
amb  
0.2  
0.050"  
Standoff  
0.020"  
0.1  
MAXIMUM STRESS  
CAPACITOR  
Standoff  
SOLDER  
FILLET  
0
5
10  
15  
20  
Number of leads on one side of Capacitor  
SUBSTRATE  
Figure 4. Number of Leads on One Side of Capacitor vs. Total  
Leadframe Inductance vs. Substrate Standoff Height  
Stress for T  
> T  
CTE  
< CTE  
sub cap  
Very high frequency switch mode power supplies place  
tremendous restrictions on output filter capacitors. In addition  
to handling high ripple current (low ESR), ESL must approach  
zero nano henrys, part must be truly surface mountable  
and be available in new configurations to be integrated into  
transmission lines to further reduce inductance with load  
currents greater than 40A at 1 MHz and as frequencies move  
above 1-2 MHz.  
oper  
amb  
Figure 2  
Stress Relief  
Leadframes on larger capacitor sizes (greater than 2225) must  
be used to minimize mechanical stress on the solder joints dur-  
ing temperature cycling which is normal operation for power  
supplies (Figure 3). Failing solder joints increase both ESR and  
ESL causing an increase in ripple, noise and heat, accelerating  
failure.  
The total inductance is the sum of each side of the part where  
the inductance of one side is the parallel combination of each  
lead in the leadframe. That inductance is given by:  
L (nH) = 5x[In (2x) / (B+C) + 1/2]  
Where = lead length in inches  
Layout  
In = natural log  
Effective solder dams must be used to keep all molten solder  
on the solder lands during reflow or solder will migrate away  
from the land, causing opens or weak solder joints. High fre-  
quency output filters cannot use low power layout techniques  
such as necked down conductors because of the stringent  
inductance requirements.  
B+C = lead cross section in inches  
so L (nH) = 2xL (nH) where L is the total inductance of the  
1
1
leadframe.  
38  
SMPS Capacitors (SK Style)  
Commercial Radial Range  
PRODUCT OFFERING – C0G, X7R AND Z5U  
AVX SK styles are conformally coated MLC capacitors for input or output  
filtering in switch mode power supplies. They are specially processed to  
handle high currents and are low enough in cost for commercial SMPS  
application.  
ELECTRICAL SPECIFICATIONS  
Temperature Coefficient  
Insulation Resistance 125°C (MIL-STD-202 Method 302)  
C0G: A Temperature Coefficient - 0 ±30 ppm/°C, -55° to +125°C  
X7R: C Temperature Coefficient - ±15%, -55° to +125°C  
Z5U: E Temperature Coefficient - +22, -56%, +10° to +85°C  
Capacitance Test (MIL-STD-202 Method 305)  
C0G: 25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz  
X7R: 25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz  
Z5U: 25°C, 0.5 Vrms max (open circuit voltage) at 1KHz  
Dissipation Factor 25°C  
C0G: 0.15% Max @ 25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz  
X7R: 2.5% Max @ 25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz  
Z5U: 3.0% Max @ 25°C, 0.5 Vrms max (open circuit voltage) at 1KHz  
Insulation Resistance 25°C (MIL-STD-202 Method 302)  
C0G and X7R: 100K Mor 1000 MF, whichever is less.  
Z5U: 10K Mor 1000 MF, whichever is less.  
C0G and X7R: 10K Mor 100 MF, whichever is less.  
Z5U: 1K Mor 100 MF, whichever is less.  
Dielectric Withstanding Voltage 25°C (Flash Test)  
C0G and X7R: 250% rated voltage for 5 seconds with 50 mA max  
charging current. (500 Volt units @ 750 VDC)  
Z5U: 200% rated voltage for 5 seconds with 50 mA max charging current.  
Life Test (1000 hrs)  
C0G and X7R: 200% rated voltage at +125°C. (500 Volt units @ 600 VDC)  
Z5U: 150% rated voltage at +85°C  
Moisture Resistance (MIL-STD-202 Method 106)  
C0G, X7R, Z5U: Ten cycles with no voltage applied.  
Thermal Shock (MIL-STD-202 Method 107, Condition A)  
Immersion Cycling (MIL-STD-202 Method104, Condition B)  
Resistance To Solder Heat (MIL-STD-202, Method 210,  
Condition B, for 20 seconds)  
HOW TO ORDER  
SK  
01  
3
E
125  
Z
A
A
*
Style  
Size  
See chart  
below  
Voltage  
25V = 3  
50V = 5  
100V = 1  
200V = 2  
500V = 7  
Temperature  
Coefficient  
Z5U = E  
X7R = C  
C0G = A  
Capacitance  
Code  
(2 significant  
digits + no.  
of zeros)  
22 nF = 223  
220 nF = 224  
1 µF = 105  
100 µF = 107  
Capacitance  
Tolerance  
Test  
Level  
Leads  
Packaging  
A = Leads  
(See Note 1)  
C0G: J = ±5%  
K = ±10%  
A = Standard  
B = Hi-Rel  
*
M = ±20%  
Note 1: No suffix signifies bulk packaging,  
which is AVX standard packaging.  
X7R: K = ±10%  
M = ±20%  
SK01, SK 3, SK 4, SK 5, SK 6, SK 9  
*
*
*
*
*
Z = +80, -20%  
& SK 0 are available taped and reel  
*
Z5U: Z = +80, -20%  
P = GMV (+100, -0%)  
per EIA-468. Use suffix “TR1” if tape &  
reel is required.  
Note: Capacitors with X7R and Z5U dielectrics are not intended for applications  
across AC supply mains or AC line filtering with polarity reversal. Contact plant  
for recommendations.  
Hi-Rel screening for C0G and X7R only. Screening consists of 100% Group A  
*
(B Level), Subgroup 1 per MIL-PRF-49470.  
TAPE & REEL QUANTITY  
Part  
Pieces  
2000  
1000  
1000  
500  
SK01  
SK03/SK53  
SK04/SK54  
SK05/SK55  
SK06/SK56  
SK09/SK59  
SK10/SK60  
500  
500  
400  
39  
SMPS Capacitors (SK Style)  
Product Offering – C0G, X7R and Z5U  
L
L
L
T
H
H
H
H + 3.683  
(0.145)  
M
M
M
LL  
LL  
LL  
LD  
LD  
LD  
LS  
LS  
LS  
SK01  
SK03 – SK10  
SK53 - SK56 and SK59 – SK60  
C0G Capacitance Range (µF)  
X7R Capacitance Range (µF)  
25  
50  
100  
200  
500  
25  
50  
100  
200  
500  
Style  
Style  
WVDC  
WVDC  
WVDC  
WVDC  
WVDC  
WVDC  
WVDC  
WVDC  
WVDC  
WVDC  
min./max. min./max. min./max. min./max. min./max.  
min./max. min./max. min./max. min./max. min./max.  
SK01  
.001/0.015 .001/0.012  
.001/0.010 .0010/0.0056 .0010/0.0018  
SK01  
.01/0.39  
.10/2.2  
.10/4.7  
.10/6.8  
1.0/15  
1.0/18  
22/33  
.01/0.33  
.10/1.8  
.10/3.3  
.10/5.6  
1.0/10  
1.0/14  
15/22  
.01/0.27  
.01/1.5  
.10/2.7  
.10/3.9  
.10/5.6  
1.0/8.2  
10/15  
.01/0.12  
.01/0.56  
.01/1.0  
.10/1.8  
.10/3.9  
.10/4.7  
5.6/8.2  
.10/2.2  
.10/4.7  
.001/0.033  
.01/0.18  
.01/0.33  
.01/0.56  
.10/1.2  
.10/1.8  
2.2/3.3  
.10/1.0  
.10/1.5  
SK03/SK53  
SK04/SK54  
SK05/SK55  
SK06/SK56  
SK07  
SK08  
SK09/SK59  
SK10/SK60  
.01/0.056  
.01/0.12  
.01/0.18  
.10/0.56  
.10/0.68  
.82/1.20  
.10/0.27  
.10/0.68  
.01/0.047  
.01/0.10  
.01/0.15  
.01/0.47  
.01/0.56  
.68/1.10  
.01/0.22  
.01/0.56  
.01/0.039 .001/0.022  
.001/0.0068  
.001/0.015  
.001/0.022  
.01/0.068  
.01/0.082  
.10/0.15  
SK03/SK53  
SK04/SK54  
SK05/SK55  
SK06/SK56  
SK07  
SK08  
SK09/SK59  
SK10/SK60  
.01/0.082  
.01/0.12  
.01/0.39  
.01/0.47  
.56/0.82  
.01/0.18  
.01/0.47  
.01/0.047  
.01/0.068  
.01/0.22  
.01/0.27  
.33/0.47  
.01/0.10  
.01/0.27  
.001/0.039  
.01/0.082  
.10/8.2  
1.0/18  
.10/5.6  
1.0/12  
.10/3.3  
.10/6.8  
Z5U Capacitance Range (µF)  
Style  
25 WVDC 50 WVDC 100 WVDC 200 WVDC  
min./max.  
.10/1.2  
min./max.  
.10/0.82  
min./max.  
.10/0.47  
min./max.  
.10/0.33  
.10/1.50  
.10/3.30  
.10/4.70  
1.0/15.00  
1.0/18.00  
22/33.00  
1.0/6.80  
1.0/18.00  
SK01  
SK03/SK53  
SK04/SK54  
SK05/SK55  
SK06/SK56  
SK07  
.10/5.6  
.10/3.30  
1.0/8.20  
.10/2.20  
.10/4.70  
1.0/6.80  
1.0/22.00  
1.0/27.00  
33/47.00  
1.0/10.00  
1.0/22.00  
1.0/10.0  
1.0/18.0  
1.0/47.0  
1.0/68.0  
82/120.0  
1.0/27.0  
1.0/56.0  
1.0/10.00  
1.0/39.00  
1.0/47.00  
56/100.00  
1.0/18.00  
1.0/39.00  
SK08  
SK09/SK59  
SK10/SK60  
DIMENSIONS  
millimeters (inches)  
Style  
L (max.)  
H (max.)  
T (max.)  
LS (nom.)  
LD (nom.)  
SK01  
5.08 (0.200)  
7.62 (0.300)  
10.2 (0.400)  
12.7 (0.500)  
22.1 (0.870)  
27.9 (1.100)  
27.9 (1.100)  
17.0 (0.670)  
23.6 (0.930)  
5.08 (0.200)  
7.62 (0.300)  
10.2 (0.400)  
12.7 (0.500)  
15.2 (0.600)  
15.2 (0.600)  
15.2 (0.600)  
13.7 (0.540)  
18.3 (0.720)  
5.08 (0.200)  
5.08 (0.200)  
5.08 (0.200)  
5.08 (0.200)  
5.08 (0.200)  
5.08 (0.200)  
8.89 (0.350)  
5.08 (0.200)  
6.35 (0.250)  
5.08 (0.200)  
5.08 (0.200)  
5.08 (0.200)  
10.2 (0.400)  
20.1 (0.790)  
24.9 (0.980)  
24.9 (0.980)  
14.6 (0.575)  
20.3 (0.800)  
0.508 (0.020)  
0.508 (0.020)  
0.508 (0.020)  
0.635 (0.025)  
0.813 (0.032)  
0.813 (0.032)  
0.813 (0.032)  
0.635 (0.025)  
0.813 (0.032)  
SK03/SK53  
SK04/SK54  
SK05/SK55  
SK06/SK56  
SK07  
SK08  
SK09/SK59  
SK10/SK60  
L = Length  
H = Height  
T = Thickness  
M = Meniscus 1.52 (0.060) max.  
LS = Lead Spacing Nominal ±.787 (0.031)  
LL = Lead Length 50.8 (2.000) max./25.4 (1.000) min.  
LD = Lead Diameter Nominal ±.050 (0.002)  
40  
SMPS Capacitors (SE Style)  
Extended Commercial Radial Range  
PRODUCT OFFERING – X7R  
AVX SE styles offer capacitance extension to popular SK ranges. The CV  
product for SE-series, X7R capacitors (TCC: ±15% over -55 to +125°C)  
compares favorably to high CV ranges offered by other suppliers in much  
less stable Y5U dielectric (TCC: +22/-56% over -30 to +85°C). SE style  
capacitors are conformally coated and are designed for input and output  
filtering applications in switch mode power supplies.  
ELECTRICAL SPECIFICATIONS  
Temperature Coefficient  
Dielectric Withstanding Voltage 25°C (Flash Test)  
X7R: Temperature Coefficient ±15%, -55° to +125°C  
Capacitance Test (MIL-STD-202 Method 305)  
X7R: 25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz  
Dissipation Factor 25°C  
X7R: 250% rated voltage for 5 seconds with 50 mA max  
charging current.  
Life Test (1000 hrs)  
X7R: 200% rated voltage at +125°C  
X7R: 2.5% Max @ 25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz  
Insulation Resistance 25°C (MIL-STD-202 Method 302)  
X7R: 100K Mor 1000 MF, whichever is less.  
Insulation Resistance 125°C (MIL-STD-202 Method 302)  
X7R: 10K Mor 100 MF, whichever is less.  
Moisture Resistance (MIL-STD-202 Method 106)  
X7R: Ten cycles with no voltage applied.  
Thermal Shock (MIL-STD-202 Method 107, Condition A)  
Immersion Cycling (MIL-STD-202 Method 104, Condition B)  
Resistance To Solder Heat (MIL-STD-202, Method 210,  
Condition B, for 20 seconds)  
HOW TO ORDER  
SE  
01  
3
C
125  
M
A
A
*
Style  
Size  
See chart  
below  
Voltage  
25V = 3  
50V = 5  
Temperature  
Coefficient  
X7R = C  
Capacitance  
Code  
(2 significant  
digits + no.  
of zeros)  
Capacitance  
Tolerance  
X7R: K = ±10%  
M = ±20%  
Test  
Leads  
Packaging  
Level  
A = Leads (See Note 1)  
A = Standard  
B = Hi-Rel  
100V = 1  
*
Z = +80, -20%  
22 nF = 223  
220 nF = 224  
1 µF = 105  
100 µF = 107  
Note 1: No suffix signifies bulk packaging,  
which is AVX standard packaging.  
Parts available tape and reel per EIA-  
468. Use suffix “TR1” if tape & reel is  
required.  
Note: Capacitors with X7R dielectrics are not intended for applications across  
AC supply mains or AC line filtering with polarity reversal. Contact plant for  
recommendations.  
Hi-Rel screening consists of 100% Group A, Subgroup 1 per MIL-PRF-39014.  
*
TAPE & REEL QUANTITY  
Part  
Pieces  
2000  
1000  
1000  
500  
SE01  
SE03/SE53  
SE04/SE54  
SE05/SE55  
41  
SMPS Capacitors (SE Style)  
Product Offering – X7R  
L
L
L
T
H
H
H
H + 3.683  
(0.145)  
M
M
M
LL  
LL  
LL  
LD  
LD  
LD  
LS  
LS  
LS  
SE01  
SE03 – SE06  
SE53 – SE56  
X7R Capacitance Range (µF)  
25  
50  
100  
Style  
SE01  
WVDC  
min./max.  
WVDC  
min./max.  
WVDC  
min./max.  
0.47/1.5  
2.7/6.8  
5.6/12  
8.2/18  
18/39  
0.39/1.0  
2.2/4.7  
3.9/10  
6.8/12  
12/27  
0.33/0.68  
1.8/3.3  
3.3/6.8  
4.7/8.2  
6.8/15  
SE03/SE53  
SE04/SE54  
SE05/SE55  
SE06/SE56  
DIMENSIONS  
millimeters (inches)  
Style  
L (max.)  
H (max.)  
T (max.)  
LS (nom.)  
LD (nom.)  
SE01  
5.08 (0.200)  
7.62 (0.300)  
10.2 (0.400)  
12.7 (0.500)  
22.1 (0.870)  
5.08 (0.200)  
7.62 (0.300)  
10.2 (0.400)  
12.7 (0.500)  
15.2 (0.600)  
5.08 (0.200)  
5.08 (0.200)  
5.08 (0.200)  
5.08 (0.200)  
5.08 (0.200)  
5.08 (0.200)  
5.08 (0.200)  
5.08 (0.200)  
10.2 (0.400)  
20.1 (0.790)  
0.508 (0.020)  
0.508 (0.020)  
0.508 (0.020)  
0.635 (0.025)  
0.813 (0.032)  
SE03/SE53  
SE04/SE54  
SE05/SE55  
SE06/SE56  
L = Length  
H = Height  
T = Thickness  
M = Meniscus 1.52 (0.060) max.  
LS = Lead Spacing Nominal ±.787 (0.031)  
LL = Lead Length 50.8 (2.000) max./25.4 (1.000 min.)  
LD = Lead Diameter Nominal ±.050 (0.002)  
42  
SMPS Capacitors (CECC Offering)  
European Preferred Styles  
T
L
H
1.50  
(0.059)  
MAX.  
31.7  
(1.248)  
MIN.  
t
S
DIMENSIONS  
millimeters (inches)  
S ±0.4  
Size Code  
Length (L)  
(max.)  
Height (H)  
(max.)  
Thickness (T)  
(max.)  
Nom (t)  
BR40  
BR50  
BR84  
10.16 (0.400)  
12.7 (0.500)  
23.6 (0.930)  
11.7 (0.460)  
12.7 (0.500)  
17.78 (0.700)  
3.81 (0.150)  
5.1 (0.200)  
6.35 (0.250)  
0.51 (0.020)  
0.64 (0.025)  
0.76 (0.030)  
5.08 (0.200)  
10.16 (0.400)  
20.32 (0.800)  
CECC APPROVED RANGE  
1B/C0G  
CECC 30 601 801 Issue 1  
2C1/X7R  
CECC 30 701 801 Issue 1  
50V  
100V  
200V  
500V  
50V  
100V  
200V  
500V  
BR40  
BR50  
BR84  
683-104  
124-224  
104-564  
473-683  
104-154  
104-474  
333-473  
683-104  
104-334  
4R5-153  
820-333  
223-104  
185-275  
395-475  
475-186  
125-185  
225-395  
475-156  
334-474  
684-105  
105-335  
473-154  
104-394  
474-155  
HOW TO ORDER  
BR  
84  
1
C
156  
K
T
A
Style  
Code  
Size  
Code  
See  
Voltage  
Dielectric  
Code  
A = C0G  
C = X7R  
Capacitance  
Code  
(2 significant  
digits + no.  
of zeros)  
Capacitance  
Tolerance  
G = ±2%  
C0G only  
J = ±5%  
Specification  
Code  
Lead Length  
Code  
A = 31.7mm min.  
Code  
5 = 50V  
1 = 100V  
2 = 200V  
7 = 500V  
T = CECC  
table  
above  
C0G only  
K = ±10%  
M = ±20%  
P = -0 +100%  
Note: If tape and reel is required, add TR to the end of the part number  
43  
ESA Qualified SMPS Capacitors  
High Voltage Chip/Leaded Capacitors  
HIGH VOLTAGE CHIP CAPACITORS  
Capacitors, Fixed, Chip, Ceramic Dielectric, Type II, High  
Voltage, Based on Styles 1812 and 1825 for use in ESA  
space programs, according to ESA/ SCC Generic  
Specification 3009 and associated Detail Specification  
3009/034 as recommended by the Space Components  
Coordination Group. (ranges in table below)  
Note: Variants 01 to 12: metallized pads  
Rated  
Size  
Variant  
Voltage Tolerance Capacitance  
(kV)  
(%)  
Code (E12)  
1812  
01  
02  
03  
04  
05  
06  
07  
08  
09  
10  
11  
12  
10  
20  
10  
20  
10  
20  
10  
20  
10  
20  
10  
20  
HOW TO ORDER  
1.0  
392 - 223  
Parts should be ordered using the ESA variant number as follows:  
2.0  
3.0  
1.0  
2.0  
3.0  
152 - 182  
821 - 102  
273 - 563  
222 - 682  
821 - 392  
3009034 XX  
B
XXX  
Type  
Variant  
(per table)  
Test Level  
C = Standard test level  
B = Level C plus serialized  
and capacitance  
Capacitance  
Code  
Detail Spec  
Number  
1825  
The first two digits represent  
significant figures and the third  
digit specifies the number of  
zeros to follow; i.e.  
102 = 1000pF  
recorded before and  
after 100% burn-in.  
103 = 10000pF  
Eg 300903401C223  
HIGH VOLTAGE LEADED CAPACITORS  
Capacitors, Fixed, Ceramic Dielectric, Type II, High Voltage,  
1.0 to 5.0 kV, Based on Case Styles VR, CV and CH for use  
in ESA space programs, according to ESA/SCC Generic  
Specification 3001 and associated Detail Specification  
3001/034 as recommended by the Space Components  
Coordination Group. (ranges in table)  
Capacitance Code (E12)  
2.0kV 3.0kV 4.0kV  
392 - 203 152 - 182 821 - 102  
273 - 563 222 - 682 821 - 392  
Case  
Size  
Lead  
Type  
Variant  
1.0kV  
5.0kV  
VR30S  
VR30  
VR40  
VR50  
VR66  
VR84  
VR90  
CV41  
CH41  
CH41  
CV51  
CH51  
CH51  
CV61  
CH61  
CH61  
CV76  
CH76  
CH76  
CV91  
CH91  
CH91  
01  
02  
03  
04  
05  
06  
07  
08  
09  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
a
a
a
a
a
a
a
b
c
d
b
c
d
b
c
d
b
c
d
b
c
d
473 - 124 822 - 153 472 - 103 182 - 222  
154 - 274 183 - 333 123 - 183 562 - 822 332 - 392  
224 - 564 393 - 823 223 - 393 103 - 153 682 - 103  
684 - 105 473 - 154 473 - 683 183 - 393 123 - 183  
125 - 275 184 - 334 823 - 184 473 - 124 223 - 563  
473 - 124 822 - 153 472 - 103 182 - 222  
Note 1: Lead Types  
a - Leaded Radial (epoxy coated)  
b - Leaded Radial (Polyurethane Varnish)  
c - Straight Dual in Line  
473 - 124 822 - 153 472 - 103 182 - 222  
473 - 124 822 - 153 472 - 103 182 - 222  
d - L Dual in Line  
154 - 274 183 - 333 123 - 183 562 - 822 332 - 392  
154 - 274 183 - 333 123 - 183 562 - 822 332 - 392  
154 - 274 183 - 333 123 - 183 562 - 822 332 - 392  
224 - 564 393 - 823 223 - 393 103 - 153 682 - 103  
224 - 564 393 - 823 223 - 393 103 - 153 682 - 103  
224 - 564 393 - 823 223 - 393 103 - 153 682 - 103  
684 - 105 473 - 154 473 - 683 183 - 393 123 - 183  
684 - 105 473 - 154 473 - 683 183 - 393 123 - 183  
684 - 105 473 - 154 473 - 683 183 - 393 123 - 183  
125 - 275 184 - 334 823 - 184 473 - 124 223 - 563  
125 - 275 184 - 334 823 - 184 473 - 124 223 - 563  
125 - 275 184 - 334 823 - 184 473 - 124 223 - 563  
Note 2: Tolerances of 10ꢀ and 20ꢀ are available  
HOW TO ORDER  
Parts should be ordered using the ESA variant  
number as follows:  
3001034  
XX  
B
XXX  
K
X
Type Variant  
Test Level  
C = Standard test level  
B = Level C plus serialized  
and capacitance recorded  
before and after 100%  
burn-in.  
Capacitance  
Code  
The first two digits represent  
significant figures and the third  
digit specifies the number of  
zeros to follow; i.e.  
Capacitance  
Tolerance  
K = 10%  
Voltage  
M = 1kV  
P = 2kV  
R = 3kV  
S = 4kV  
Z = 5kV  
Detail Spec  
Number  
(per table above)  
M = 20%  
102 = 1000pF  
103 = 10000pF  
Eg 300103412C274KM  
44  
ESA Qualified SMPS Capacitors  
High Capacitance  
European Preferred Styles  
HIGH CAPACITANCE LEADED CAPACITORS  
Note 1: Lead Types  
Capacitors, Fixed, Ceramic Dielectric, Type II, High  
a - Leaded Radial (epoxy coated)  
b - Leaded Radial (Polyurethane Varnish)  
c - Straight Dual in Line  
Capacitance, Based on Case Styles BR, CV and CH for use  
in ESA space programs, according to ESA/SCC Generic  
Specification 3001 and associated Detail Specification  
3001/030 as recommended by the Space Components  
Coordination Group. (see ranges in table below)  
d - L Dual in Line  
Note 2: Tolerances of 10ꢀ and 20ꢀ are available  
Capacitance Code (E12)  
100V 200V  
Capacitance Code (E12)  
100V 200V 500V  
Case  
Size  
Case  
Size  
Variant Figure  
Variant Figure  
50V  
500V  
50V  
BR40  
BR50  
BR66  
BR72  
BR84  
CV41  
CH41  
CH41  
CH42  
CH42  
CH43  
CH43  
CH44  
CH44  
CV51  
CH51  
CH51  
CH52  
CH52  
CH53  
CH53  
CH54  
CH54  
CV61  
CH61  
CH61  
CH62  
CH62  
CH63  
CH63  
CH64  
CH64  
CV71  
CH71  
CH71  
CH72  
CH72  
01  
02  
03  
04  
05  
06  
07  
08  
09  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
˜31  
32  
33  
34  
35  
36  
37  
a
a
a
a
a
b
c
d
c
d
c
d
c
d
b
c
d
c
d
c
d
c
d
b
c
d
c
d
c
d
c
d
b
c
d
c
d
185 - 335  
395 - 565  
685 - 106  
126 - 186  
126 - 186  
185 - 335  
185 - 335  
185 - 335  
395 - 565  
395 - 565  
825 - 106  
825 - 106  
126  
125 - 395 334 - 564 124 - 224  
225 - 395 684 - 105 274 - 394  
475 - 825 105 - 225 474 - 105  
825 - 156 225 - 335 824 - 155  
825 - 156 225 - 335 824 - 155  
125 - 275 334 - 564 124 - 224  
125 - 275 334 - 564 124 - 224  
125 - 275 334 - 564 124 - 224  
225 - 395 684 - 105 274 - 394  
225 - 395 684 - 105 274 - 394  
685 - 825 155 - 185 564 - 684  
685 - 825 155 - 185 564 - 684  
CH73  
CH73  
CH74  
CH74  
CV76  
CH76  
CH76  
CH77  
CH77  
CH78  
CH78  
CH79  
CH79  
CH81  
CH81  
CH82  
CH82  
CH83  
CH83  
CH84  
CH84  
CH86  
CH86  
CH87  
CH87  
CH88  
CH88  
CH89  
CH89  
CH91  
CH91  
CH92  
CH92  
CH93  
CH93  
CH94  
CH94  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
c
d
c
d
b
c
d
c
d
c
d
c
d
c
d
c
d
c
d
c
d
c
d
c
d
c
d
c
d
c
d
c
d
c
d
c
d
476 - 566  
476 - 566  
686  
336 - 396 825 - 106 395 - 475  
336 - 396 825 - 106 395 - 475  
476  
476  
126  
126  
565  
565  
686  
126 - 186  
126 - 186  
126 - 186  
226 - 396  
226 - 396  
476 - 566  
476 - 566  
686  
825 - 156 225 - 335 824 - 155  
825 - 156 225 - 335 824 - 155  
825 - 156 225 - 335 824 - 155  
186 - 276 395 - 685 185 - 335  
186 - 276 395 - 685 185 - 335  
336 - 396 825 - 106 395 - 475  
336 - 396 825 - 106 395 - 475  
476  
476  
126  
126  
565  
565  
106  
106  
225  
225  
824 - 105  
824 - 105  
696  
126  
156 - 226  
156 - 226  
276 - 476  
276 - 476  
566 - 686  
566 - 686  
826  
126 - 186 225 - 395 824 - 155  
126 - 186 225 - 395 824 - 155  
226 - 396 475 - 825  
395 - 565  
395 - 565  
395 - 565  
685 - 106  
685 - 106  
126 - 156  
126 - 156  
186 - 226  
186 - 226  
685 - 106  
685 - 106  
685 - 106  
126 - 226  
126 - 226  
276 - 336  
276 - 336  
396  
225 - 395 684 - 105 274 - 394  
225 - 395 684 - 105 274 - 394  
225 - 395 684 - 105 274 - 394  
475 - 825 125 - 225 474 - 824  
475 - 825 125 - 225 474 - 824  
106 - 126 275 - 335 105 - 125  
106 - 126 275 - 335 105 - 125  
226 - 396 475 - 825  
476 - 566  
476 - 566  
686  
10 - 12  
10 - 12  
156  
826  
686  
156  
156  
156  
395  
395  
155  
155  
226 - 336  
226 - 336  
396 - 686  
396 - 686  
826 - 107  
826 - 107  
127  
156 - 276 395 - 685 155 - 225  
156 - 276 395 - 685 155 - 225  
336 - 566 825 - 156  
336 - 566 825 - 156  
686 - 826 186 - 226  
475 - 825 105 - 225 474 - 105  
475 - 825 105 - 225 474 - 105  
475 - 825 105 - 225 474 - 105  
106 - 156 275 - 475 105 - 185  
106 - 156 275 - 475 105 - 185  
186 - 226 565 - 685 225 - 275  
186 - 226 565 - 685 225 - 275  
686 - 826 186 - 226  
107  
107  
276  
276  
127  
396 - 476  
396 - 476  
566 - 107  
566 - 107  
127 - 157  
127 - 157  
187  
336 - 396 825 - 106  
336 - 396 825 - 106  
476 - 826 126 - 226  
476 - 826 126 - 226  
107 - 127 276 - 336  
107 - 127 276 - 336  
276 - 336 825 - 106  
276 - 336 825 - 106  
335  
335  
396  
126 - 186  
126 - 186  
126 - 186  
226 - 396  
226 - 396  
825 - 156 225 - 335 824 - 155  
825 - 156 225 - 335 824 - 155  
825 - 156 225 - 335 824 - 155  
186 - 276 395 - 685 185 - 335  
186 - 276 395 - 685 185 - 335  
157  
157  
396  
396  
187  
HOW TO ORDER  
Parts should be ordered using the ESA variant number as follows:  
3001030  
XX  
B
XXX  
K
X
Type Variant  
(per table above)  
Test Level  
C = Standard test level  
B = Level C plus serialized and  
capacitance recorded before  
and after 100% burn-in.  
Capacitance  
Code  
The first two digits represent  
significant figures and the third  
digit specifies the number of  
zeros to follow; i.e.  
Capacitance  
Tolerance  
K = 10%  
Voltage  
C = 50V  
E = 100V  
G = 200V  
L = 500V  
Detail Spec  
Number  
M = 20%  
102 = 1000pF  
103 = 10000pF  
EG 300103018C106KC  
Lot Acceptance Testing is available for all our ESA qualified ranges.  
LAT 1  
LAT 2  
LAT 3  
42 samples 12 mechanical + 20 life test + 6 for TC + 4 for solder  
30 samples 20 life test + 6 for TC + 4 for solder  
10 samples 6 for TC + 4 for solder  
45  
SMPS Capacitors  
ESA/SCC DETAIL SPECIFICATION NO. 3009/034  
PHYSICAL DIMENSIONS  
Millimeters (Inches)  
L
Symbol Variants 01 to 06  
Variants 07 to 12  
Min.  
4.20  
(0.165)  
2.80  
(0.110)  
Max.  
5.00  
(0.197)  
3.60  
(0.142)  
3.00  
(0.118)  
0.75  
(0.030)  
Min.  
4.20  
(0.165)  
5.67  
(0.223)  
Max.  
5.00  
(0.197)  
6.67  
(0.263)  
3.30  
(0.130)  
0.75  
(0.030)  
I
L
l
e
e
M
0.25  
(0.010)  
0.25  
(0.010)  
M
=
=
M
ESA/SCC DETAIL SPECIFICATION NO. 3001/034  
PHYSICAL DIMENSIONS – VR STYLE  
Millimeters (Inches)  
Case  
Size  
B
Max.  
7.62  
Ød  
Min.  
E
F
Max.  
5.00  
H
Max.  
4.60  
J
L
B
F
Variant  
Max.  
0.61  
Min.  
4.58  
Max.  
5.58  
Max. Min.  
1.50  
0.51  
31.7  
01  
02  
03  
04  
05  
06  
07  
VR30S  
VR30  
VR40  
VR50  
VR66  
VR84  
VR90  
(0.300) (0.020) (0.024) (0.180) (0.220)  
7.62 0.51 0.61 4.58 5.58  
(0.300) (0.020) (0.024) (0.180) (0.220)  
10.16 0.51 0.61 4.58 5.58  
(0.400) (0.020) (0.024) (0.180) (0.220)  
12.7 0.59 0.69 9.66 10.66  
(0.500) (0.023) (0.027) (0.380) (0.420)  
17.5 0.86 0.96 14.2 15.2  
(0.689) (0.034) (0.038) (0.559) (0.598)  
23.62 0.86 0.96 20.4 22.0  
(0.930) (0.034) (0.038) (0.803) (0.866)  
23.5 0.86 0.96 20.4 22.0  
(0.925) (0.034) (0.038) (0.803) (0.866)  
(0.197) (0.181) (0.059) (1.248)  
5.00 9.62 1.50 31.7  
(0.197) (0.379) (0.059) (1.248)  
5.00 11.7 1.50 31.7  
(0.197) (0.461) (0.059) (1.248)  
5.10 14.2 1.50 31.7  
(0.201) (0.559) (0.059) (1.248)  
6.40 16.5 1.50 31.7  
(0.252) (0.650) (0.059) (1.248)  
6.40 19.78 1.50 31.7  
(0.252) (0.779) (0.059) (1.248)  
6.40 42.0 1.50 31.7  
H
L
J
Ød  
E
(0.252) (1.654) (0.059) (1.248)  
ESA/SCC DETAIL SPECIFICATION NO. 3001/034  
PHYSICAL DIMENSIONS – CV STYLE  
Millimeters (Inches)  
F
Case  
Size  
B
Max.  
10.6  
(0.417)  
11.9  
(0.469)  
16.5  
(0.650)  
22.7  
Ød  
Min.  
E
F
Max.  
3.80  
H
Max.  
8.70  
L
Variant  
Max.  
0.75  
Min.  
7.70  
Max.  
8.70  
Min. Max.  
0.65  
22.0  
28.0  
08  
11  
14  
17  
20  
CV41  
CV51  
CV61  
CV76  
CV91  
(0.026) (0.030) (0.303) (0.343)  
0.85 0.95 9.66 10.66  
(0.033) (0.037) (0.380) (0.420)  
0.85 0.95 14.74 15.74  
(0.033) (0.037) (0.580) (0.620)  
0.85 0.95 20.4 22.0  
(0.033) (0.037) (0.803) (0.866)  
1.15 1.25 20.4 22.0  
(0.045) (0.049) (0.803) (0.866)  
(0.150) (0.343) (0.866) (1.102)  
3.80 10.7 22.0 28.0  
(0.150) (0.421) (0.866) (1.102)  
3.80 13.6 22.0 28.0  
(0.150) (0.535) (0.866) (1.102)  
3.80 16.6 22.0 28.0  
(0.150) (0.654) (0.866) (1.102)  
3.80 40.6 22.0 28.0  
(0.150) (1.598) (0.866) (1.102)  
B
Ød  
H
L
(0.894)  
22.7  
(0.894)  
L
E
46  
SMPS Capacitors  
ESA/SCC DETAIL SPECIFICATION NO. 3001/034  
PHYSICAL DIMENSIONS – CH STYLE, D.I.L.  
Case  
Millimeters (Inches)  
E F  
A
Max.  
D
Max.  
Variant  
a1  
Size  
Min.  
Max.  
Max.  
A
07  
09  
11  
13  
16  
18  
20  
22  
25  
27  
29  
31  
34  
36  
38  
40  
43  
45  
47  
49  
51  
53  
55  
57  
59  
61  
63  
65  
67  
69  
71  
73  
CH41 3.80 (0.150) 8.70 (0.343) 7.70 (0.303) 8.70 (0.343) 9.20 (0.362)  
CH42 7.40 (0.291) 8.70 (0.343) 7.70 (0.303) 8.70 (0.343) 9.20 (0.362)  
CH43 11.1 (0.437) 8.70 (0.343) 7.70 (0.303) 8.70 (0.343) 9.20 (0.362)  
CH44 14.8 (0.583) 8.70 (0.343) 7.70 (0.303) 8.70 (0.343) 9.20 (0.362)  
CH51 3.80 (0.150) 10.7 (0.421) 9.66 (0.380) 10.66 (0.420) 10.7 (0.421)  
CH52 7.40 (0.291) 10.7 (0.421) 9.66 (0.380) 10.66 (0.420) 10.7 (0.421)  
CH53 11.1 (0.437) 10.7 (0.421) 9.66 (0.380) 10.66 (0.420) 10.7 (0.421)  
CH54 14.8 (0.583) 10.7 (0.421) 9.66 (0.380) 10.66 (0.420) 10.7 (0.421)  
CH61 3.80 (0.150) 13.6 (0.535) 13.5 (0.531) 14.5 (0.571) 14.9 (0.587)  
CH62 7.40 (0.291) 13.6 (0.535) 13.5 (0.531) 14.5 (0.571) 14.9 (0.587)  
CH63 11.1 (0.437) 13.6 (0.535) 13.5 (0.531) 14.5 (0.571) 14.9 (0.587)  
CH64 14.8 (0.583) 13.6 (0.535) 13.5 (0.531) 14.5 (0.571) 14.9 (0.587)  
CH71 3.80 (0.150) 21.6 (0.850) 14.74 (0.580) 15.74 (0.620) 16.8 (0.661)  
CH72 7.40 (0.291) 21.6 (0.850) 14.74 (0.580) 15.74 (0.620) 16.8 (0.661)  
CH73 11.1 (0.437) 21.6 (0.850) 14.74 (0.580) 15.74 (0.620) 16.8 (0.661)  
CH74 14.8 (0.583) 21.6 (0.850) 14.74 (0.580) 15.74 (0.620) 16.8 (0.661)  
CH76 3.80 (0.150) 16.6 (0.654) 19.52 (0.769) 21.12 (0.831) 21.6 (0.850)  
CH77 7.40 (0.291) 16.6 (0.654) 19.52 (0.769) 21.12 (0.831) 21.6 (0.850)  
CH78 11.1 (0.437) 16.6 (0.654) 19.52 (0.769) 21.12 (0.831) 21.6 (0.850)  
CH79 14.8 (0.583) 16.6 (0.654) 19.52 (0.769) 21.12 (0.831) 21.6 (0.850)  
CH81 3.80 (0.150) 38.2 (1.504) 9.66 (0.380) 10.66 (0.420) 12.0 (0.472)  
CH82 7.40 (0.291) 38.2 (1.504) 9.66 (0.380) 10.66 (0.420) 12.0 (0.472)  
CH83 11.1 (0.437) 38.2 (1.504) 9.66 (0.380) 10.66 (0.420) 12.0 (0.472)  
CH84 14.8 (0.583) 38.2 (1.504) 9.66 (0.380) 10.66 (0.420) 12.0 (0.472)  
CH86 3.80 (0.150) 38.2 (1.504) 14.74 (0.580) 15.74 (0.620) 18.9 (0.744)  
CH87 7.40 (0.291) 38.2 (1.504) 14.74 (0.580) 15.74 (0.620) 18.9 (0.744)  
CH88 11.1 (0.437) 38.2 (1.504) 14.74 (0.580) 15.74 (0.620) 18.9 (0.744)  
CH89 14.8 (0.583) 38.2 (1.504) 14.74 (0.580) 15.74 (0.620) 18.9 (0.744)  
CH91 3.80 (0.150) 40.6 (1.598) 19.52 (0.769) 21.12 (0.831) 24.0 (0.945)  
CH92 7.40 (0.291) 40.6 (1.598) 19.52 (0.769) 21.12 (0.831) 24.0 (0.945)  
CH93 11.1 (0.437) 40.6 (1.598) 19.52 (0.769) 21.12 (0.831) 24.0 (0.945)  
CH94 14.8 (0.583) 40.6 (1.598) 19.52 (0.769) 21.12 (0.831) 24.0 (0.945)  
L
b1  
E
e
b
D
F
Symbol  
Min.  
-
Max.  
2.00  
(0.079)  
Notes  
a1  
1
0.45  
0.55  
b
b1  
e
1
1
2
1
(0.018)  
0.204  
(0.008)  
2.49  
(0.022)  
0.304  
(0.012)  
2.59  
(0.102)  
14.0  
(0.098)  
12.0  
L
(0.472)  
(0.551)  
Notes: 1 – All leads  
2 – Each space  
ESA/SCC DETAIL SPECIFICATION NO. 3001/034  
PHYSICAL DIMENSIONS – CH STYLE, L  
Millimeters (Inches)  
E F  
Case  
Size  
A
Max.  
D
Max.  
Variant  
Min.  
Max.  
Max.  
A
10  
13  
16  
19  
22  
CH41 3.80 (0.150) 8.70 (0.343) 7.70 (0.303) 8.70 (0.343) 9.20 (0.362)  
CH51 3.80 (0.150) 10.7 (0.421) 9.66 (0.380) 10.66 (0.420) 10.7 (0.421)  
CH61 3.80 (0.150) 13.6 (0.535) 13.5 (0.531) 14.5 (0.571) 14.9 (0.587)  
CH76 3.80 (0.150) 16.6 (0.654) 19.52 (0.769) 21.12 (0.831) 21.6 (0.850)  
CH91 3.80 (0.150) 40.6 (1.598) 19.52 (0.769) 21.12 (0.831) 24.0 (0.945)  
L
e
L
E
L
b
D
Symbol  
Min.  
0.45  
(0.018)  
Max.  
0.55  
(0.022)  
Notes  
b
1
2.49  
(0.098)  
2.04  
2.59  
(0.102)  
3.01  
e
L
2
1
F
(0.080)  
(0.120)  
Notes: 1 – All leads  
2 – Each space  
47  
SMPS Capacitors  
ESA/SCC DETAIL SPECIFICATION NO. 3001/030  
PHYSICAL DIMENSIONS – BR STYLE  
Millimeters (Inches)  
Case  
Size  
B
Ød  
Min.  
E
F
Max.  
5.00  
H
Max.  
11.7  
J
L
Variant  
B
F
Max.  
10.16  
(0.400)  
12.7  
(0.500)  
17.5  
(0.689)  
19.3  
(0.760)  
23.62  
(0.930)  
Max.  
0.61  
Min.  
4.58  
Max.  
5.58  
Max. Min.  
1.50  
0.51  
31.7  
01  
02  
03  
04  
05  
BR40  
BR50  
BR66  
BR72  
BR84  
(0.020) (0.024) (0.180) (0.220)  
0.59 0.69 9.66 10.66  
(0.023) (0.027) (0.380) (0.420)  
0.86 0.96 14.2 15.2  
(0.034) (0.038) (0.559) (0.598)  
0.86 0.96 14.74 15.74  
(0.034) (0.038) (0.580) (0.620)  
0.71 0.81 18.93 20.83  
(0.028) (0.032) (0.745) (0.820)  
(0.197) (0.461) (0.059) (1.248)  
5.10 14.2 1.50 31.7  
(0.201) (0.559) (0.059) (1.248)  
6.40 16.5 1.50 31.7  
(0.252) (0.650) (0.059) (1.248)  
6.40 24.0 1.50 31.7  
(0.252) (0.945) (0.059) (1.248)  
6.40 19.78 1.50 31.7  
H
L
J
(0.252) (0.779) (0.059) (1.248)  
E
Ød  
ESA/SCC DETAIL SPECIFICATION NO. 3001/030  
PHYSICAL DIMENSIONS – CV STYLE  
Millimeters (Inches)  
Case  
Size  
B
Max.  
10.6  
(0.417)  
11.9  
(0.469)  
16.5  
(0.650)  
17.8  
Ød  
Min.  
E
F
Max.  
3.80  
H
Max.  
8.70  
L
F
Variant  
Max.  
0.75  
Min.  
7.70  
Max.  
8.70  
Min. Max.  
0.65  
22.0  
28.0  
06  
15  
24  
33  
42  
CV41  
CV51  
CV61  
CV71  
CV76  
(0.026) (0.030) (0.303) (0.343)  
0.85 0.95 9.66 10.66  
(0.033) (0.037) (0.380) (0.420)  
0.85 0.95 14.74 15.74  
(0.033) (0.037) (0.580) (0.620)  
0.85 0.95 14.74 15.74  
(0.033) (0.037) (0.580) (0.620)  
0.85 0.95 20.4 22.0  
(0.033) (0.037) (0.803) (0.866)  
(0.150) (0.343) (0.866) (1.102)  
3.80 10.7 22.0 28.0  
(0.150) (0.421) (0.866) (1.102)  
3.80 13.6 22.0 28.0  
(0.150) (0.535) (0.866) (1.102)  
3.80 21.6 22.0 28.0  
(0.150) (0.850) (0.866) (1.102)  
3.80 16.6 22.0 28.0  
(0.150) (0.654) (0.866) (1.102)  
B
Ød  
H
L
(0.701)  
22.7  
(0.894)  
L
E
48  
SMPS Capacitors  
ESA/SCC DETAIL SPECIFICATION NO. 3001/030  
PHYSICAL DIMENSIONS – CH STYLE, D.I.L.  
Millimeters (Inches)  
E F  
Case  
Size  
A
Max.  
D
Max.  
Variant  
a1  
Min.  
Max.  
Max.  
A
07  
09  
11  
13  
16  
18  
20  
22  
25  
27  
29  
31  
34  
36  
38  
40  
43  
45  
47  
49  
51  
53  
55  
57  
59  
61  
63  
65  
67  
69  
71  
73  
CH41 3.80 (0.150) 8.70 (0.343) 7.70 (0.303) 8.70 (0.343) 9.20 (0.362)  
CH42 7.40 (0.291) 8.70 (0.343) 7.70 (0.303) 8.70 (0.343) 9.20 (0.362)  
CH43 11.1 (0.437) 8.70 (0.343) 7.70 (0.303) 8.70 (0.343) 9.20 (0.362)  
CH44 14.8 (0.583) 8.70 (0.343) 7.70 (0.303) 8.70 (0.343) 9.20 (0.362)  
CH51 3.80 (0.150) 10.7 (0.421) 9.66 (0.380) 10.66 (0.420) 10.7 (0.421)  
CH52 7.40 (0.291) 10.7 (0.421) 9.66 (0.380) 10.66 (0.420) 10.7 (0.421)  
CH53 11.1 (0.437) 10.7 (0.421) 9.66 (0.380) 10.66 (0.420) 10.7 (0.421)  
CH54 14.8 (0.583) 10.7 (0.421) 9.66 (0.380) 10.66 (0.420) 10.7 (0.421)  
CH61 3.80 (0.150) 13.6 (0.535) 13.5 (0.531) 14.5 (0.571) 14.9 (0.587)  
CH62 7.40 (0.291) 13.6 (0.535) 13.5 (0.531) 14.5 (0.571) 14.9 (0.587)  
CH63 11.1 (0.437) 13.6 (0.535) 13.5 (0.531) 14.5 (0.571) 14.9 (0.587)  
CH64 14.8 (0.583) 13.6 (0.535) 13.5 (0.531) 14.5 (0.571) 14.9 (0.587)  
CH71 3.80 (0.150) 21.6 (0.850) 14.74 (0.580) 15.74 (0.620) 16.8 (0.661)  
CH72 7.40 (0.291) 21.6 (0.850) 14.74 (0.580) 15.74 (0.620) 16.8 (0.661)  
CH73 11.1 (0.437) 21.6 (0.850) 14.74 (0.580) 15.74 (0.620) 16.8 (0.661)  
CH74 14.8 (0.583) 21.6 (0.850) 14.74 (0.580) 15.74 (0.620) 16.8 (0.661)  
CH76 3.80 (0.150) 16.6 (0.654) 19.52 (0.769) 21.12 (0.831) 21.6 (0.850)  
CH77 7.40 (0.291) 16.6 (0.654) 19.52 (0.769) 21.12 (0.831) 21.6 (0.850)  
CH78 11.1 (0.437) 16.6 (0.654) 19.52 (0.769) 21.12 (0.831) 21.6 (0.850)  
CH79 14.8 (0.583) 16.6 (0.654) 19.52 (0.769) 21.12 (0.831) 21.6 (0.850)  
CH81 3.80 (0.150) 38.2 (1.504) 9.66 (0.380) 10.66 (0.420) 12.0 (0.472)  
CH82 7.40 (0.291) 38.2 (1.504) 9.66 (0.380) 10.66 (0.420) 12.0 (0.472)  
CH83 11.1 (0.437) 38.2 (1.504) 9.66 (0.380) 10.66 (0.420) 12.0 (0.472)  
CH84 14.8 (0.583) 38.2 (1.504) 9.66 (0.380) 10.66 (0.420) 12.0 (0.472)  
CH86 3.80 (0.150) 38.2 (1.504) 14.74 (0.580) 15.74 (0.620) 18.9 (0.744)  
CH87 7.40 (0.291) 38.2 (1.504) 14.74 (0.580) 15.74 (0.620) 18.9 (0.744)  
CH88 11.1 (0.437) 38.2 (1.504) 14.74 (0.580) 15.74 (0.620) 18.9 (0.744)  
CH89 14.8 (0.583) 38.2 (1.504) 14.74 (0.580) 15.74 (0.620) 18.9 (0.744)  
CH91 3.80 (0.150) 40.6 (1.598) 19.52 (0.769) 21.12 (0.831) 24.0 (0.945)  
CH92 7.40 (0.291) 40.6 (1.598) 19.52 (0.769) 21.12 (0.831) 24.0 (0.945)  
CH93 11.1 (0.437) 40.6 (1.598) 19.52 (0.769) 21.12 (0.831) 24.0 (0.945)  
CH94 14.8 (0.583) 40.6 (1.598) 19.52 (0.769) 21.12 (0.831) 24.0 (0.945)  
L
F
b1  
E
e
b
D
Symbol  
Min.  
-
Max.  
2.00  
(0.079)  
Notes  
a1  
1
0.45  
0.55  
b
b1  
e
1
1
2
1
(0.018)  
0.204  
(0.008)  
2.49  
(0.022)  
0.304  
(0.012)  
2.59  
(0.102)  
3.04  
(0.098)  
2.04  
(0.080)  
L
(0.120)  
Notes: 1 – All leads  
2 – Each space  
ESA/SCC DETAIL SPECIFICATION NO. 3001/030  
PHYSICAL DIMENSIONS – CH STYLE, L  
Millimeters (Inches)  
E F  
Case  
Size  
A
Max.  
D
Max.  
Variant  
Min.  
Max.  
Max.  
A
08  
10  
12  
14  
17  
19  
21  
23  
26  
28  
30  
32  
35  
37  
39  
41  
44  
46  
48  
50  
52  
54  
56  
58  
60  
62  
64  
66  
68  
70  
72  
74  
CH41 3.80 (0.150) 8.70 (0.343) 7.70 (0.303) 8.70 (0.343 9.20 (0.362)  
CH42 7.40 (0.291) 8.70 (0.343) 7.70 (0.303) 8.70 (0.343 9.20 (0.362)  
CH43 11.1 (0.437) 8.70 (0.343) 7.70 (0.303) 8.70 (0.343 9.20 (0.362)  
CH44 14.8 (0.583) 8.70 (0.343) 7.70 (0.303) 8.70 (0.343 9.20 (0.362)  
CH51 3.80 (0.150) 10.7 (0.421) 9.66 (0.380) 10.66 (0.420) 10.7 (0.421)  
CH52 7.40 (0.291) 10.7 (0.421) 9.66 (0.380) 10.66 (0.420) 10.7 (0.421)  
CH53 11.1 (0.437) 10.7 (0.421) 9.66 (0.380) 10.66 (0.420) 10.7 (0.421)  
CH54 14.8 (0.583) 10.7 (0.421) 9.66 (0.380) 10.66 (0.420) 10.7 (0.421)  
CH61 3.80 (0.150) 13.6 (0.535) 13.5 (0.531) 14.5 (0.571) 14.9 (0.587)  
CH62 7.40 (0.291) 13.6 (0.535) 13.5 (0.531) 14.5 (0.571) 14.9 (0.587)  
CH63 11.1 (0.437) 13.6 (0.535) 13.5 (0.531) 14.5 (0.571) 14.9 (0.587)  
CH64 14.8 (0.583) 13.6 (0.535) 13.5 (0.531) 14.5 (0.571) 14.9 (0.587)  
CH71 3.80 (0.150) 21.6 (0.850) 14.74 (0.580) 15.74 (0.620) 16.8 (0.661)  
CH72 7.40 (0.291) 21.6 (0.850) 14.74 (0.580) 15.74 (0.620) 16.8 (0.661)  
CH73 11.1 (0.437) 21.6 (0.850) 14.74 (0.580) 15.74 (0.620) 16.8 (0.661)  
CH74 14.8 (0.583) 21.6 (0.850) 14.74 (0.580) 15.74 (0.620) 16.8 (0.661)  
CH76 3.80 (0.150) 16.6 (0.654) 19.52 (0.769) 21.12 (0.831) 21.6 (0.850)  
CH77 7.40 (0.291) 16.6 (0.654) 19.52 (0.769) 21.12 (0.831) 21.6 (0.850)  
CH78 11.1 (0.437) 16.6 (0.654) 19.52 (0.769) 21.12 (0.831) 21.6 (0.850)  
CH79 14.8 (0.583) 16.6 (0.654) 19.52 (0.769) 21.12 (0.831) 21.6 (0.850)  
CH81 3.80 (0.150) 38.2 (1.504) 9.66 (0.380) 10.66 (0.420) 12.0 (0.472)  
CH82 7.40 (0.291) 38.2 (1.504) 9.66 (0.380) 10.66 (0.420) 12.0 (0.472)  
CH83 11.1 (0.437) 38.2 (1.504) 9.66 (0.380) 10.66 (0.420) 12.0 (0.472)  
CH84 14.8 (0.583) 38.2 (1.504) 9.66 (0.380) 10.66 (0.420) 12.0 (0.472)  
CH86 3.80 (0.150) 38.2 (1.504) 14.74 (0.580) 15.74 (0.620) 18.9 (0.744)  
CH87 7.40 (0.291) 38.2 (1.504) 14.74 (0.580) 15.74 (0.620) 18.9 (0.744)  
CH88 11.1 (0.437) 38.2 (1.504) 14.74 (0.580) 15.74 (0.620) 18.9 (0.744)  
CH89 14.8 (0.583) 38.2 (1.504)) 14.74 (0.580) 15.74 (0.620) 18.9 (0.744)  
CH91 3.80 (0.150) 40.6 (1.598) 19.52 (0.769) 21.12 (0.831) 24.0 (0.945)  
CH92 7.40 (0.291) 40.6 (1.598) 19.52 (0.769) 21.12 (0.831) 24.0 (0.945)  
CH93 11.1 (0.437) 40.6 (1.598) 19.52 (0.769) 21.12 (0.831) 24.0 (0.945)  
CH94 14.8 (0.583) 40.6 (1.598) 19.52 (0.769) 21.12 (0.831) 24.0 (0.945)  
L
e
L
E
L
b
D
F
Symbol  
Min.  
0.45  
(0.018)  
2.49  
(0.098)  
2.04  
Max.  
Notes  
0.55  
b
1
(0.022)  
2.59  
e
L
2
1
(0.102)  
3.04  
(0.120)  
(0.080)  
Notes: 1 – All leads  
2 – Each space  
49  
High Voltage DIP Leaded (HV Style)  
U.S. Preferred Styles  
C0G Dielectric N1500  
X7R Dielectric  
General  
General  
General  
Specifications  
Specifications  
Specifications  
Capacitance Range  
Capacitance Range  
100 pF to 1.9 µF  
Capacitance Range  
100 pF to 15 µF  
100 pF to 1.2 µF  
(25°C, 1.0±0.2 Vrms (open circuit voltage)  
at 1 KHz, for 100 pF use 1 MHz)  
(25°C, 1.0±0.2 Vrms (open circuit voltage)  
at 1 KHz)  
(25°C, 1.0±0.2 Vrms (open circuit voltage)  
at 1 KHz)  
Capacitance Tolerances  
±5%, ±10%, ±20%  
Capacitance Tolerances  
±5%, ±10%, ±20%  
Capacitance Tolerances  
±10%, ±20%, +80%, -20%  
Operating Temperature Range  
-55°C to +125°C  
Operating Temperature Range  
-55°C to +125°C  
Operating Temperature Range  
-55°C to +125°C  
Temperature Characteristic  
0 ± 30 ppm/°C  
Temperature Characteristic  
-1500 ±250 ppm/°C  
Temperature Characteristic  
±15% (0 VDC)  
Voltage Ratings  
1000 VDC thru 5000 VDC (+125°C)  
Voltage Ratings  
1000 VDC thru 5000 VDC (+125°C)  
Voltage Ratings  
1000 VDC thru 5000 VDC (+125°C)  
Dissipation Factor  
0.15% max.  
Dissipation Factor  
0.15% max.  
Dissipation Factor  
2.5% max.  
(25°C, 1.0±0.2 Vrms (open circuit voltage)  
at 1 KHz, for 100 pF use 1 MHz)  
(25°C, 1.0±0.2 Vrms (open circuit voltage)  
at 1 KHz)  
(25°C, 1.0±0.2 Vrms (open circuit voltage)  
at 1 KHz)  
Insulation Resistance (+25°C, at 500V)  
100K Mmin., or 1000 M-µF min.,  
whichever is less  
Insulation Resistance (+25°C, at 500V)  
100K Mmin., or 1000 M-µF min.,  
whichever is less  
Insulation Resistance (+25°C, at 500V)  
100K Mmin., or 1000 M-µF min.,  
whichever is less  
Insulation Resistance (+125°C, at 500V)  
10K Mmin., or 100 M-µF min.,  
whichever is less  
Insulation Resistance (+125°C, at 500V)  
10K Mmin., or 100 M-µF min.,  
whichever is less  
Insulation Resistance (+125°C, at 500V)  
10K Mmin., or 100 M-µF min.,  
whichever is less  
Dielectric Strength  
120% rated voltage, 5 seconds  
Dielectric Strength  
120% rated voltage, 5 seconds  
Dielectric Strength  
120% rated voltage, 5 seconds  
Life Test  
100% rated and +125°C  
Life Test  
100% rated and +125°C  
Life Test  
100% rated and +125°C  
HOW TO ORDER  
AVX Styles: HV01 THRU HV06  
HV  
01  
A
C
105  
M
A
N
650  
AVX Style  
Size  
Voltage  
Temperature  
Coefficient  
C0G = A  
Capacitance  
Code  
Capacitance  
Tolerance  
Failure  
Rate  
Termination  
Height  
See  
1K = A  
N = Straight Lead  
Max  
dimen- 2K = G  
sions  
chart  
(2 significant  
digits + no.  
of zeros)  
C0G: J = ±5%  
A = Does J = Leads  
Dimension "A"  
120 = 0.120"  
240 = 0.240"  
360 = 0.360"  
480 = 0.480"  
650 = 0.650"  
3K = H  
4K = J  
5K = K  
X7R = C  
K = ±10% not apply  
formed in  
L = Leads  
formed out  
N1500 = 4  
M = ±20%  
X7R: K = ±10%  
M = ±20%  
10 pF = 100  
100 pF = 101  
1,000 pF = 102  
Z = +80, -20%  
22,000 pF = 223 N1500: J = ±5%  
220,000 pF = 224  
1 µF = 105  
K = ±10%  
M = ±20%  
10 µF = 106  
100 µF = 107  
Note: Capacitors with X7R dielectrics are not intended for applications across AC supply mains or AC line filtering with polarity reversal. Contact plant for recommendations.  
50  
High Voltage DIP Leaded (HV Style)  
Surface Mount and Thru-Hole HV Styles  
U.S. Preferred Styles  
CHIP SEPARATION  
0.254 (0.010) TYP.  
D
E
1.397 (0.055)  
0.254 (0.010)  
A
B
6.35  
(0.250) MIN.  
0.254 (0.010) TYP.  
0.508 (0.020) TYP.  
2.54 (0.100) TYP.  
C
2.54 (0.100) MAX.  
0.635 (0.025) MIN.  
“N” STYLE LEADS  
CHIP SEPARATION  
0.254 (0.010) TYP.  
D
E
0.254 (0.010) RAD. (TYP.)  
1.397 (0.055)  
0.254 (0.010)  
A
B
0.254 (0.010) TYP.  
1.905 (0.075)  
0.635 (0.025)  
TYP.  
1.778 (0.070)  
0.254 (0.010)  
0.508 (0.020) TYP.  
2.54 (0.100) TYP.  
C
2.54 (0.100) MAX.  
0.635 (0.025) MIN.  
“J” STYLE LEADS  
CHIP SEPARATION  
0.254 (0.010) TYP.  
D
E
0.254 (0.010) RAD. (TYP.)  
1.397 (0.055)  
0.254 (0.010)  
A
B
0.254 (0.010) TYP.  
1.905 (0.075)  
0.635 (0.025)  
TYP.  
1.778 (0.070)  
0.254 (0.010)  
0.508 (0.020) TYP.  
2.54 (0.100) TYP.  
C
2.54 (0.100) MAX.  
0.635 (0.025) MIN.  
“L” STYLE LEADS  
DIMENSIONS  
millimeters (inches)  
No. of Leads  
per side  
Style  
A (max.)  
B (max.)  
C ±.635(±.025)  
D ±.635(±.025)  
E (max.)  
HV01  
HV02  
HV03  
HV04  
HV05  
HV06  
53.3 (2.100)  
39.1 (1.540)  
27.2 (1.070)  
10.2 (0.400)  
6.35 (0.250)  
53.3 (2.100)  
10.5 (0.415)  
20.3 (0.800)  
10.5 (0.415)  
10.2 (0.400)  
6.35 (0.250)  
29.0 (1.140)  
54.9 (2.160)  
40.7 (1.600)  
28.2 (1.130)  
11.2 (0.440)  
7.62 (0.300)  
54.9 (2.160)  
4
8
4
4
3
For “N” Style Leads,  
“B” Dimension = “A”  
Dimension Plus 0.065".  
See page 52 for  
maximum “A”  
Dimension  
For “J” & “L” Leads,  
“B” Dimension = “A”  
Dimension Plus 0.080"  
11  
51  
High Voltage DIP Leaded (HV Style)  
Surface Mount and Thru-Hole HV Styles  
U.S. Preferred Styles  
Max Capacitance (µF) Available Versus Style with Height (A) of 0.120" - 3.05mm  
HV01 _ _ _ _ _ _ AN120  
HV02 _ _ _ _ _ _ AN120  
HV03 _ _ _ _ _ _ AN120  
HV04 _ _ _ _ _ _ AN120  
HV05 _ _ _ _ _ _ AN120  
HV06 _ _ _ _ _ _ AN120  
1KV 2KV 3KV 4KV 5KV  
.240 .066 .028 .018 .015  
AVX  
1KV 2KV 3KV 4KV 5KV 1KV 2KV 3KV 4KV 5KV 1KV 2KV 3KV 4KV 5KV 1KV 2KV 3KV 4KV 5KV  
1KV  
2KV  
STYLE  
.086 .024 .011 .0062 .0052 .120 .034 .015 .0088 .0074 .042 .013 .0058 .0030 .0024 .012 .0040 .0018 .0009 .0007  
.0048  
.0013  
C0G  
.140 .042 .018 .010 .0084 .200 .058 .024 .014 .012 .068 .020 .0090 .0050 .0040 .020 .0066 .0028 .0014 .0012  
.0078  
.060  
.0022  
---  
.380 .100 .046 .030 .026  
3.00 .700 .440 .200 .170  
N1500  
X7R  
1.10 .260 .150 .066 .052 1.50 .360 .200 .094 .078 .520 .130 .072 .032 .024 .160 .042 ---  
---  
---  
Max Capacitance (µF) Available Versus Style with Height (A) of 0.240" - 6.10mm  
HV01 _ _ _ _ _ _ AN240  
HV02 _ _ _ _ _ _ AN240  
HV03 _ _ _ _ _ _ AN240  
HV04 _ _ _ _ _ _ AN240  
HV05 _ _ _ _ _ _ AN240  
HV06 _ _ _ _ _ _ AN240  
AVX  
1KV 2KV 3KV 4KV 5KV 1KV 2KV 3KV 4KV 5KV 1KV 2KV 3KV 4KV 5KV 1KV 2KV 3KV 4KV 5KV  
.170 .048 .022 .012 .010 .240 .068 .031 .017 .015 .084 .026 .011 .0060 .0048 .025 .0080 .0036 .0018 .0014  
.280 .084 .036 .020 .016 .400 .110 .048 .028 .024 .130 .040 .018 .010 .0080 .040 .013 .0056 .0028 .0025  
1KV  
.0096  
.015  
2KV  
1KV 2KV 3KV 4KV 5KV  
STYLE  
.0027  
.0044  
.480 .130 .056 .036 .031  
.760 .210 .092 .060 .052  
C0G  
N1500  
X7R  
2.20 .520 .300 .130 .100 3.10 .720 .400 .180 .150 1.00 .270 .140 .064 .048 .330 .084 ---  
---  
---  
.120  
---  
6.00 1.40 .880 .400 .340  
Max Capacitance (µF) Available Versus Style with Height (A) of 0.360" - 9.15mm  
HV01 _ _ _ _ _ _ AN360  
HV02 _ _ _ _ _ _ AN360  
HV03 _ _ _ _ _ _ AN360  
HV04 _ _ _ _ _ _ AN360  
HV05 _ _ _ _ _ _ AN360  
HV06 _ _ _ _ _ _ AN360  
1KV 2KV 3KV 4KV 5KV  
.720 .200 .084 .055 .047  
AVX  
1KV 2KV 3KV 4KV 5KV 1KV 2KV 3KV 4KV 5KV 1KV 2KV 3KV 4KV 5KV 1KV 2KV 3KV 4KV 5KV  
1KV  
2KV  
STYLE  
.250 .072 .033 .018 .015 .360 .100 .047 .026 .022 .120 .039 .017 .0090 .0072 .038 .012 .0054 .0027 .0022  
.014  
.0040  
C0G  
.420 .120 .055 .030 .025 .600 .170 .072 .043 .036 .200 .060 .027 .015 .012 .060 .020 .0084 .0043 .0037  
.023  
.180  
.0066  
---  
1.10 .310 .130 .090 .078  
9.00 2.10 1.30 .600 .510  
N1500  
X7R  
3.30 .780 .450 .200 .150 4.70 1.00 .600 .280 .230 1.50 .410 .210 .096 .072 .490 .120 ---  
---  
---  
Max Capacitance (µF) Available Versus Style with Height (A) of 0.480" - 12.2mm  
HV01 _ _ _ _ _ _ AN480  
HV02 _ _ _ _ _ _ AN480  
HV03 _ _ _ _ _ _ AN480  
HV04 _ _ _ _ _ _ AN480  
HV05 _ _ _ _ _ _ AN480  
HV06 _ _ _ _ _ _ AN480  
AVX  
1KV 2KV 3KV 4KV 5KV 1KV 2KV 3KV 4KV 5KV 1KV 2KV 3KV 4KV 5KV 1KV 2KV 3KV 4KV 5KV  
.340 .096 .044 .024 .020 .480 .130 .063 .035 .030 .160 .052 .023 .012 .0096 .051 .016 .0072 .0036 .0029  
.560 .160 .073 .040 .033 .800 .230 .096 .057 .048 .270 .080 .036 .020 .016 .080 .026 .011 .0057 .0050  
1KV  
.019  
.031  
.240  
2KV  
.0054  
.0088  
---  
1KV 2KV 3KV 4KV 5KV  
STYLE  
C0G  
.960 .260 .110 .073 .062  
1.50 .420 .180 .120 .100  
12.0 2.80 1.70 .800 .68  
N1500  
X7R  
4.40 1.00 .600 .260 .200 6.30 1.40 .800 .370 .310 2.00 .550 .280 .120 .096 .650 .160 ---  
---  
---  
Max Capacitance (µF) Available Versus Style with Height (A) of 0.650" - 16.5mm  
HV01 _ _ _ _ _ _ AN650  
HV02 _ _ _ _ _ _ AN650  
HV03 _ _ _ _ _ _ AN650  
HV04 _ _ _ _ _ _ AN650  
HV05 _ _ _ _ _ _ AN650  
HV06 _ _ _ _ _ _ AN650  
AVX  
1KV 2KV 3KV 4KV 5KV 1KV 2KV 3KV 4KV 5KV 1KV 2KV 3KV 4KV 5KV 1KV 2KV 3KV 4KV 5KV  
.430 .120 .056 .031 .026 .610 .170 .079 .044 .037 .210 .065 .029 .015 .012 .064 .020 .009 .0045 .0037  
.700 .210 .092 .050 .042 1.00 .290 .120 .072 .060 .340 .100 .045 .025 .020 .100 .033 .014 .0072 .0063  
1KV  
.024  
.039  
.300  
2KV  
.0068  
.011  
---  
1KV 2KV 3KV 4KV 5KV  
STYLE  
C0G  
1.20 .330 .140 .092 .078  
1.90 .530 .230 .150 .130  
15.0 3.50 2.20 1.00 .850  
N1500  
X7R  
5.50 1.30 .750 .330 .260 7.90 1.80 1.00 .470 .390 2.60 .690 .360 .160 .120 .820 .210 ---  
---  
---  
52  
High Voltage Leaded (CH Style)  
Radial, Dual-in-Line & ‘L’ Lead SMT  
European Preferred Styles  
330 pF to 2.7 µF  
This range of radial, dual-in-line for both through hole and  
surface mount products is intended for use in high voltage  
power supplies and voltage multiplier circuits. The multilayer  
ceramic construction offers excellent volumetric efficiency  
compared with other high voltage dielectrics. They are suitable  
for both high reliability and industrial applications.  
1kV to 5kV  
-55ºC to +125ºC  
1B/C0G and 2C1/X7R Dielectrics  
ELECTRICAL SPECIFICATIONS  
Temperature Coefficient CECC 30 000, (4.24.1)  
1B/C0G: A Temperature Coefficient - 0 ± 30ppm/ºC  
2C1/X7R: C Temperature Characteristic - ± 15% (0v dc)  
Dielectric Withstanding Voltage 25°C  
130% rated voltage for 5 seconds  
Life Test (1000 hrs) CECC 30000 (4.23)  
Capacitance Test 25ºC  
1B/C0G & 2C1/X7R: 120% rated voltage at +125ºC.  
1B/C0G: Measured at 1 VRMS max at 1KHz (1MHz <100 pF)  
2C1/X7R: Measured at 1 VRMS max at 1KHz  
Aging  
1B/C0G: Zero  
2C1/X7R: 2.5%/decade hour  
Dissipation Factor 25°C  
1B/C0G: 0.15% max at 1KHz, 1 VRMS (1MHz for <100 pF)  
2C1/X7R: 2.5% max at 1KHz, 1 VRMS  
Insulation Resistance  
1B/C0G & 2C1/X7R: 100K megohms or 1000 megohms-µF,  
whichever is less  
DUAL-IN-LINE  
W max.  
W max.  
2.0  
(0.079)  
max.  
T max.  
L max.  
2.54 (0.100)  
±0.5 (0.200)  
L
max.  
3.8 (0.149)  
13 (0.512)  
±1.0 (0.039)  
max.  
S ±0.5 (0.020)  
S ±0.5  
2.54 (0.100) ±0.5 (0.200)  
L1  
L2  
(0.020)  
L2  
L1  
2.54 (0.100) ±0.5 (0.200)  
DIMENSIONS  
millimeters (inches)  
No. of  
Leads  
per side  
L
W
S
Style  
(max)  
(max)  
(nom)  
CH41  
CH51  
9.2 (0.362)  
10.7 (0.421)  
14.9 (0.587)  
21.6 (0.850)  
24.0 (0.944)  
8.7 (0.342)  
10.7 (0.421)  
13.6 (0.535)  
21.6 (0.850)  
40.6 (1.598)  
8.2 (0.323)  
3
4
10.2 (0.400)  
14.0 (0.551)  
20.3* (0.800)  
20.3* (0.800)  
CH61  
5
CH76  
6
CH91  
14  
*Tolerance 0.8  
HOW TO ORDER  
CH  
41  
A
C
104  
K
A
8
0
A
7
Style  
Code  
Size Voltage Dielectric Capacitance Capacitance  
Specification  
Code  
Finish  
Code  
Lead Dia.  
Code  
0 = Standard  
Lead Space  
Code  
A = Standard  
Lead Style  
Code  
Code Code  
Code  
A = C0G  
C = X7R  
Code  
(2 significant  
digits + no.  
of zeros)  
eg. 105 = 1 µF  
106 = 10 µF  
107 = 100 µF  
Tolerance  
A = 1kV  
G = 2kV  
H = 3kV  
J = 4kV  
J = ±5%  
K = ±10%  
M = ±20%  
P = -0 +100%  
A = Non customized 8 = Varnish  
0 = Dual in line  
straight  
7 = Dual in line  
Lstyle  
K = 5kV  
53  
High Voltage Leaded (CV Style)  
Chip Assemblies  
European Preferred Styles  
VERTICALLY MOUNTED RADIAL PRODUCT  
Part Number format (CVxxxxxxxxxxxA2)  
Typical Part Number CV51AC154MA40A2  
T Max.  
L Max.  
DIMENSIONS  
millimeters (inches)  
Lead  
L
Style  
H
T
S
Dia  
(max)  
(max)  
(max)  
(nom)  
H Max.  
(nom)  
CV41  
CV51  
CV61  
CV76  
CV91  
10.6 (0.417)  
11.9 (0.469)  
16.5 (0.650)  
22.7 (0.893)  
22.7 (0.893)  
8.70 (0.343)  
10.7 (0.421)  
13.6 (0.536)  
16.6 (0.654)  
40.6 (1.598)  
3.80 (0.150)  
3.80 (0.150)  
3.80 (0.150)  
3.80 (0.150)  
3.80 (0.150)  
8.20 (0.323)  
10.2 (0.402)  
15.2 (0.599)  
21.2* (0.835)  
21.2* (0.835)  
0.70 (0.028)  
0.90 (0.035)  
0.90 (0.035)  
0.90 (0.035)  
1.20 (0.047)  
25 (0.984)  
±3 (0.118)  
Lead Dia.  
See Table  
*Tolerance 0.8mm (0.031)  
S ±0.5  
(0.020)  
HOW TO ORDER  
CV  
51  
A
C
154  
M
A
8
0
A
2
Style  
Code  
Size Voltage Dielectric Capacitance Capacitance Specification  
Finish  
Code  
8 = Varnish  
Lead Dia.  
Lead Space  
Code  
A = Standard  
Lead Style  
Code  
Code Code  
A = 1kV  
Code  
Code  
(2 significant  
digits + no.  
of zeros)  
eg. 105 = 1 µF  
106 = 10 µF  
107 = 100 µF  
Tolerance  
J = ±5%  
Code  
Code  
A = C0G  
C = X7R  
A = Non customized  
0 = Standard  
G = 2kV  
H = 3kV  
J = 4kV  
K = ±10%  
M = ±20%  
P = -0 +100%  
K = 5kV  
54  
High Voltage Leaded (CH/CV Style)  
Chip Assemblies  
European Preferred Styles  
1B/C0G ULTRA STABLE CERAMIC  
CV41-CH41  
CV51-CH51  
CV61-CH61  
Styles  
CV76-CH76  
Styles  
CV91-CH91  
Styles  
Styles  
Styles  
Cap pF  
330  
K
K
K
K
390  
470  
J
J
J
J
560  
680  
K
K
K
K
820  
H
H
H
H
J
1000  
J
J
J
1200  
1500  
K
K
K
1800  
G
G
G
G
G
G
H
H
H
J
2200  
J
J
2700  
K
K
K
K
3300  
G
G
G
G
G
G
G
H
H
H
H
J
3900  
J
J
J
4700  
5600  
A
A
A
A
A
A
K
K
6800  
G
G
G
G
G
G
H
H
H
H
J
8200  
J
J
J
J
J
K
K
K
10000  
12000  
15000  
18000  
22000  
27000  
33000  
39000  
47000  
56000  
68000  
82000  
100000  
120000  
150000  
180000  
220000  
270000  
330000  
A
A
A
A
A
A
G
G
G
G
G
G
H
H
H
H
H
A
A
A
A
A
A
A
G
G
G
G
G
G
A
A
A
A
A
A
A
A
A
A
A
NB Figures in cells refer to size within ordering information  
55  
High Voltage Leaded (CH/CV Style)  
Chip Assemblies  
European Preferred Styles  
2C1/X7R STABLE CERAMIC  
CV41-CH41  
CV51-CH51  
CV61-CH61  
Styles  
CV76-CH76  
Styles  
CV91-CH91  
Styles  
Styles  
Styles  
Cap nF  
1.2  
K
K
K
K
K
1.3  
1.5  
J
J
J
J
J
2.2  
2.7  
3.3  
K
K
3.9  
4.7  
H
H
H
H
J
J
K
K
K
K
K
5.6  
J
6.8  
J
8.2  
G
G
G
G
J
10  
H
H
H
J
12  
J
K
K
K
15  
J
18  
A
A
A
A
A
A
A
A
A
A
A
G
G
G
G
H
H
H
H
H
J
22  
J
K
K
K
K
27  
J
33  
J
39  
A
A
A
A
A
A
A
A
A
A
A
G
G
G
G
G
H
J
47  
H
H
H
J
J
J
J
J
J
K
K
56  
68  
82  
G
H
H
H
H
H
100  
120  
150  
180  
220  
270  
330  
390  
470  
560  
680  
820  
1000  
1200  
1500  
1800  
2200  
2700  
A
A
A
A
A
A
A
A
A
A
G
G
G
A
A
A
A
A
A
A
A
A
A
G
G
G
G
A
A
A
A
A
A
A
A
A
A
A
NB Figures in cells refer to size within ordering information  
56  
High Voltage MLC Radials (SV Style)  
Application Information on High Voltage MLC Capacitors  
High value, low leakage and small size are difficult parameters  
to obtain in capacitors for high voltage systems. AVX special  
high voltage MLC radial leaded capacitors meet these  
performance characteristics. The added advantage of these  
capacitors lies in special internal design minimizing the electric  
field stresses within the MLC. These special design criteria  
result in significant reduction of partial discharge activity within  
the dielectric and having, therefore, a major impact on long-  
term reliability of the product. The SV high voltage radial  
capacitors are conformally coated with high insulation  
resistance, high dielectric strength epoxy eliminating the  
possibility of arc flashover.  
The SV high voltage radial MLC designs exhibit low ESRs at  
high frequency. The same criteria governing the high voltage  
design carries the added benefits of extremely low ESR in  
relatively low capacitance and small packages. These  
capacitors are designed and are ideally suited for applications  
such as snubbers in high frequency power converters,  
resonators in SMPS, and high voltage coupling/DC blocking.  
C0G Dielectric  
X7R Dielectric  
General Specifications  
General Specifications  
Capacitance Range  
10 pF to .15 µF  
Capacitance Range  
100 pF to 2.2 µF  
(+25°C, 1.0 ±0.2 Vrms at 1kHz,  
for 100 pF use 1 MHz)  
(+25°C, 1.0 ±0.2 Vrms at 1kHz)  
Capacitance Tolerances  
±10%; ±20%; +80%, -20%  
Capacitance Tolerances  
±5%; ±10%; ±20%  
Operating Temperature Range  
-55°C to +125°C  
Operating Temperature Range  
-55°C to +125°C  
Temperature Characteristic  
±15% (0 VDC)  
Temperature Characteristic  
0 ± 30 ppm/°C  
Voltage Ratings  
1000 VDC thru 5000 VDC (+125°C)  
Voltage Ratings  
1000 VDC thru 5000 VDC (+125°C)  
Dissipation Factor  
2.5% max.  
Dissipation Factor  
0.15% max.  
(+25°C, 1.0 ±0.2 Vrms at 1kHz)  
(+25°C, 1.0 ±0.2 Vrms at 1kHz,  
for 100 pF use 1 MHz)  
Insulation Resistance (+25°C, at 500V)  
100K Mmin., or 1000 M-µF min.,  
whichever is less  
Insulation Resistance (+25°C, at 500V)  
100K Mmin. or 1000 M-µF min.,  
whichever is less  
Insulation Resistance (+125°C, at 500V)  
10K Mmin., or 100 M-µF min.,  
whichever is less  
Insulation Resistance (+125°C, at 500V)  
10K Mmin., or 100 M-µF min.,  
whichever is less  
Dielectric Strength  
120% rated voltage, 5 seconds  
Dielectric Strength  
120% rated voltage, 5 seconds  
Life Test  
100% rated and +125°C  
Life Test  
100% rated and +125°C  
57  
High Voltage MLC Radials (SV Style)  
L
L
T
H
H
H + 3.683  
(0.145)  
31.75  
(1.25)  
MIN  
31.75  
(1.250)  
min.  
LD  
LD  
S
S
SV52 thru SV59 and SV63 thru SV67  
SV01 thru SV17  
HIGH VOLTAGE RADIAL LEAD  
HOW TO ORDER  
AVX Styles: SV01 THRU SV16  
SV01  
A
A
102  
K
A
A
*
AVX  
Style  
Voltage  
Temperature  
Coefficient  
C0G = A  
Capacitance Code  
(2 significant digits  
+ no. of zeros)  
Examples:  
10 pF = 100  
100 pF = 101  
1,000 pF = 102  
22,000 pF = 223  
220,000 pF = 224  
1 µF = 105  
Capacitance  
Tolerance  
C0G: J = ±5%  
K = ±10%  
M = ±20%  
X7R: K = ±10%  
M = ±20%  
Packaging  
Test  
Leads  
1000V = A  
1500V = S  
2000V = G  
2500V = W  
3000V = H  
4000V = J  
5000V = K  
(See Note 1)  
Level  
A = Leads  
A = Standard  
B = Hi-Rel  
X7R = C  
*
Note 1: No suffix signifies bulk packaging  
which is AVX standard packaging.  
Use suffix “TR1” if tape and reel is  
required. Parts are reel packaged  
per EIA-468.  
Z = +80 -20%  
Note: Capacitors with X7R dielectrics are not intended for applications across  
AC supply mains or AC line filtering with polarity reversal. Contact plant for  
recommendations.  
Hi-Rel screening consists of 100% Group A, Subgroup 1 per MIL-PRF-49467.  
*
(Except partial discharge testing is not performed and DWV is at 120% rated voltage).  
DIMENSIONS  
millimeters (inches)  
TAPE & REEL QUANTITY  
Length (L) Height (H) Thickness (T) Lead Spacing  
LD (Nom)  
AVX Style  
max  
max  
max  
±.762 (.030) (S)  
Part  
Pieces  
1000  
1000  
1000  
1000  
1000  
500  
SV01  
6.35 (0.250) 5.59 (0.220) 5.08 (0.200)  
4.32 (0.170)  
5.59 (0.220)  
6.99 (0.275)  
7.62 (0.300)  
9.52 (0.375)  
10.16 (0.400)  
12.1 (0.475)  
14.6 (0.575)  
17.1 (0.675)  
22.9 (0.900)  
27.9 (1.100)  
33.0 (1.300)  
5.08 (0.200)  
5.08 (0.200)  
10.2 (0.400)  
20.1 (0.790)  
20.3 (0.800)  
0.64 (0.025)  
0.64 (0.025)  
0.64 (0.025)  
0.64 (0.025)  
0.64 (0.025)  
0.64 (0.025)  
0.64 (0.025)  
0.64 (0.025)  
0.64 (0.025)  
0.64 (0.025)  
0.64 (0.025)  
0.64 (0.025)  
0.51 (0.020)  
0.51 (0.020)  
0.64 (0.025)  
0.81 (0.032)  
0.81 (0.032)  
SV01/SV51  
SV02/SV52  
SV03/SV53  
SV04/SV54  
SV05/SV55  
SV06/SV56  
SV07/SV57  
SV08/SV58  
SV09/SV59  
SV10  
SV02/SV52 8.13 (0.320) 7.11 (0.280) 5.08 (0.200)  
SV03/SV53 9.40 (0.370) 7.62 (0.300) 5.08 (0.200)  
SV04/SV54 11.4 (0.450) 5.59 (0.220) 5.08 (0.200)  
SV05/SV55 11.9 (0.470) 10.2 (0.400) 5.08 (0.200)  
SV06/SV56 14.0 (0.550) 7.11 (0.280) 5.08 (0.200)  
SV07/SV57 14.5 (0.570) 12.7 (0.500) 5.08 (0.200)  
SV08/SV58 17.0 (0.670) 15.2 (0.600) 5.08 (0.200)  
SV09/SV59 19.6 (0.770) 18.3 (0.720) 5.08 (0.200)  
500  
500  
500  
400  
SV10  
SV11  
SV12  
26.7 (1.050) 12.7 (0.500) 5.08 (0.200)  
31.8 (1.250) 15.2 (0.600) 5.08 (0.200)  
36.8 (1.450) 18.3 (0.720) 5.08 (0.200)  
SV11  
400  
SV12  
300  
SV13/SV63  
SV14/SV64  
SV15/SV65  
SV16/SV66  
SV17/SV67  
1000  
1000  
500  
SV13/SV63 7.62 (0.300) 9.14 (0.360) 5.08 (0.200)  
SV14/SV64 10.2 (0.400) 11.7 (0.460) 5.08 (0.200)  
SV15/SV65 12.7 (0.500) 14.2 (0.560) 5.08 (0.200)  
SV16/SV66 22.1 (0.870) 16.8 (0.660) 5.08 (0.200)  
SV17/SV67 23.6 (0.930) 19.8 (0.780) 6.35 (0.250)  
500  
400  
58  
High Voltage MLC Radials (SV Style)  
CAPACITANCE VALUE  
C0G  
Style  
SV01  
SV02/SV52  
SV03/SV53  
SV04/SV54  
1000V  
1500V  
2000V  
min./max.  
2500V  
min./max.  
3000V  
4000V  
5000V  
min./max.  
min./max.  
min./max.  
100 pF/ 1000 pF  
100 pF/ 3300 pF 100 pF / 1200 pF  
10 pF / 330 pF  
10 pF / 180 pF  
10 pF / 680 pF  
100 pF/ 5600 pF 100 pF / 2200 pF 100 pF / 1200 pF  
100 pF/ 2200 pF 10 pF / 820 pF 10 pF / 470 pF  
10 pF/ 120 pF  
10 pF/ 470 pF  
10 pF/ 820 pF  
10 pF/ 270 pF  
10 pF / 82 pF  
10 pF / 270 pF  
10 pF / 470 pF  
10 pF / 180 pF  
10 pF / 150 pF  
10 pF / 270 pF  
10 pF / 100 pF  
10 pF / 680 pF  
10 pF / 330 pF  
10 pF / 100 pF  
10 pF / 180 pF  
10 pF / 68 pF  
10 pF / 470 pF  
10 pF / 220 pF  
10 pF / 820 pF  
SV05/SV55 1000 pF/0.015 µF 100 pF / 5600 pF 100 pF / 3300 pF 100 pF/ 2200 pF 100 pF /1200 pF  
SV06/SV56 100 pF/ 6800 pF 100 pF / 2700 pF 100 pF / 1500 pF 10 pF/ 820 pF 10 pF / 560 pF  
SV07/SV57 1000 pF/0.027 µF 1000 pF / 0.012 µF 100 pF / 5600 pF 100 pF/ 3900 pF 100 pF /2200 pF 100 pF / 1200 pF  
SV08/SV58 1000 pF/0.039 µF 1000 pF / 0.018 µF 1000 pF / 0.01 µF 100 pF/ 6800 pF 100 pF /3900 pF 100 pF / 2200 pF 100 pF /1500 pF  
SV09/SV59 1000 pF/0.068 µF 1000 pF / 0.027 µF 1000 pF /0.015 µF 1000 pF/0.010 µF 100 pF /6800 pF 100 pF / 3900 pF 100 pF /2700 pF  
SV10  
SV11  
SV12  
1000 pF/0.056 µF 1000 pF / 0.022 µF 1000 pF /0.012 µF 100 pF/ 8200 pF 100 pF /5600 pF 100 pF / 3300 pF 100 pF /2200 pF  
1000 pF/0.082 µF 1000 pF / 0.039 µF 1000 pF /0.022 µF 1000 pF/0.015 µF 100 pF /8200 pF 100 pF / 4700 pF 100 pF /3300 pF  
0.01 µF/ 0.15 µF 1000 pF / 0.056 µF 1000 pF /0.033 µF 1000 pF/0.022 µF 1000 pF /0.015 µF 100 pF / 8200 pF 100 pF /5600 pF  
SV13/SV63  
100 pF/ 8200 pF 100 pF / 3300 pF 100 pF / 1800 pF 100 pF/ 1200 pF 100 pF / 820 pF  
10 pF / 390 pF  
10 pF / 820 pF  
10 pF / 270 pF  
10 pF / 560 pF  
SV14/SV64 1000 pF/0.015 µF 100 pF / 6800 pF 100 pF / 4700 pF 100 pF/ 2700 pF 100 pF /1500 pF  
SV15/SV65 1000 pF/0.033 µF 1000 pF /0.015 µF 100 pF / 0.01 µF 100 pF/ 5600 pF 100 pF /2700 pF 100 pF / 1800 pF 100 pF /1200 pF  
SV16/SV66 1000 pF/0.068 µF 1000 pF /0.027 µF 1000 pF /0.018 µF 1000 pF/0.010 µF 100 pF /6800 pF 100 pF / 3900 pF 100 pF /2700 pF  
SV17/SV67 1000 pF/ 0.10 µF 1000 pF /0.056 µF 1000 pF /0.039 µF 1000 pF/0.022 µF 1000 pF /0.012 µF 100 pF / 6800 pF 100 pF /4700 pF  
X7R  
SV01  
1000 pF/0.012 µF 100 pF / 3900 pF 100 pF / 1500 pF  
SV02/SV52 1000 pF/0.047 µF 1000 pF / 0.015 µF 100 pF / 5600 pF 100 pF/ 3900 pF 100 pF / 2700 pF  
SV03/SV53 1000 pF/0.082 µF 1000 pF / 0.018 µF 1000 pF / 0.01 µF 100 pF/ 6800 pF 100 pF / 4700 pF 100 pF / 1800 pF  
SV04/SV54 1000 pF/0.033 µF 100 pF / 6800 pF 100 pF / 3900 pF 100 pF/ 2200 pF 100 pF / 1800 pF 100 pF / 820 pF  
SV05/SV55 0.01 µF/ 0.22 µF 1000 pF / 0.056 µF 1000 pF /0.027 µF 1000 pF/0.018 µF 1000 pF /0.012 µF 100 pF / 4700 pF  
SV06/SV56 0.01 µF/ 0.10 µF 1000 pF / 0.033 µF 1000 pF /0.012 µF 100 pF/ 8200 pF 100 pF / 6800 pF 100 pF / 2700 pF 100 pF /1200 pF  
SV07/SV57 0.01 µF/ 0.39 µF 0.01 µF / 0.10 µF 1000 pF /0.047 µF 1000 pF/0.033 µF 1000 pF /0.027 µF 1000 pF / 0.01 µF 100 pF /6800 pF  
SV08/SV58 0.01 µF/ 0.68 µF 0.01 µF / 0.18 µF 1000 pF /0.082 µF 1000 pF/0.068 µF 1000 pF /0.047 µF 1000 pF /0.018 µF 1000 pF /0.012 µF  
SV09/SV59 0.10 µF/ 1.00 µF 0.01 µF / 0.27 µF 0.01 µF / 0.12 µF 0.01 µF/ 0.10 µF 1000 pF /0.068 µF 1000 pF /0.027 µF 1000 pF /0.018 µF  
SV10  
SV11  
SV12  
0.01 µF/ 0.82 µF 0.01 µF / 0.22 µF 0.01 µF / 0.10 µF 1000 pF/0.082 µF 1000 pF /0.056 µF 1000 pF /0.022 µF 1000 pF /0.018 µF  
0.10 µF/ 1.2 µF 0.01 µF / 0.39 µF 0.01 µF / 0.18 µF 0.01 µF/ 0.15 µ  
0.10 µF/ 2.20 µF 0.01 µF / 0.56 µF 0.01 µF / 0.27 µF 0.01 µF/ 0.22 µ  
F
F
F
0.01 µF / 0.10 µF 1000 pF /0.039 µF 1000 pF /0.027 µF  
0.01 µF / 0.15 µF 1000 pF /0.056 µF 1000 pF /0.033 µF  
SV13/SV63 0.01 µF/ 0.10 µF 1000 pF / 0.033 µF 1000 pF /0.012 µF 1000 pF/ 0.01 µ  
SV14/SV64 0.01 µF/ 0.18 µF 1000 pF / 0.068 µF 1000 pF /0.022 µF 1000 pF/0.018 µF 1000 pF /0.015 µF 100 pF / 5600 pF  
100 pF / 6800 pF 100 pF / 2700 pF  
SV15/SV65 0.01 µF/ 0.27 µF 0.01 µF / 0.10 µF 1000 pF /0.033 µF 1000 pF/0.027 µF 1000 pF /0.022 µF 1000 pF / 8200 pF 100 pF /4700 pF  
SV16/SV66 0.01 µF/ 1.0 µF 0.01 µF / 0.27 µF 0.01 µF / 0.12 µF 0.01 µF/ 0.10 µF 1000 pF /0.068 µF 1000 pF /0.027 µF 1000 pF /0.018 µF  
SV17/SV67 0.01 µF/ 1.2 µF 0.01 µF / 0.39 µF 0.01 µF / 0.15 µF 0.01 µF/ 0.12 µF 1000 pF /0.082 µF 1000 pF /0.039 µF 1000 pF /0.027 µF  
Note: Contact factory for other voltage ratings or values.  
AVX IS QUALIFIED TO THE FOLLOWING DSCC DRAWINGS  
Specification #  
Description  
C0G-1000 VDC  
X7R-1000 VDC  
X7R-2000 VDC  
C0G-3000 VDC  
X7R-3000 VDC  
C0G-4000 VDC  
X7R-4000 VDC  
C0G-5000 VDC  
X7R-5000 VDC  
Capacitance Range  
10 pF - 0.025 µF  
100 pF - 0.47 µF  
100 pF - 0.22 µF  
10 pF - 8200 pF  
100 pF - 0.1 µF  
10 pF - 6800 pF  
100 pF - 0.056 µF  
10 pF - 5600 pF  
100 pF - 0.033 µF  
87046  
87043  
87040  
87114  
87047  
87076  
89044  
87077  
87070  
These specifications require group A and B testing per MIL-PRF-49467  
59  
MLC Chip Capacitors  
Basic Construction  
A multilayer ceramic (MLC) capacitor is a monolithic block  
of ceramic containing two sets of offset, interleaved  
planar electrodes that extend to two opposite surfaces of  
the ceramic dielectric. This simple structure requires a  
considerable amount of sophistication, both in material and  
in manufacture, to produce it in the quality and quantities  
needed in todays electronic equipment.  
Terminations  
Standard Nickel Barrier  
T = Lead Free Tin Plate  
J = 5% minimum Lead Plated  
Leach resistance to 90 seconds at 260°C  
Solderable plated for dimensional control  
Special materials as required  
Electrode  
Ceramic Layer  
End Terminations  
Terminated  
Edge  
Terminated  
Edge  
Margin  
Electrodes  
QUALITY STATEMENT  
AVX focus is customer satisfaction – Customer satisfaction in  
the broadest sense: Products, service, price, delivery, tech-  
nical support, and all the aspects of a business that impact  
you, the customer.  
upon military and commercial standards and systems  
including ISO9001. QV2000 is a natural extension of past  
quality efforts with world class techniques for ensuring a total  
quality environment to satisfy our customers during this  
decade and into the 21st century.  
Our long term strategy is for continuous improvement which  
is defined by our Quality Vision 2000. This is a total quality  
management system developed by and supported by AVX  
corporate management. The foundation of QV2000 is built  
As your components supplier, we invite you to experience  
the quality, service, and commitment of AVX.  
60  
General Description  
Effects of Voltage – Variations in voltage have little effect  
on Class 1 dielectric but does affect the capacitance and  
dissipation factor of Class 2 dielectrics. The application of  
DC voltage reduces both the capacitance and dissipation  
factor while the application of an AC voltage within a  
reasonable range tends to increase both capacitance and  
dissipation factor readings. If a high enough AC voltage is  
applied, eventually it will reduce capacitance just as a DC  
voltage will. Figure 2 shows the effects of AC voltage.  
Table 1: EIA and MIL Temperature Stable and General  
Application Codes  
EIA CODE  
Percent Capacity Change Over Temperature Range  
RS198  
Temperature Range  
X7  
X5  
Y5  
Z5  
-55°C to +125°C  
-55°C to +85°C  
-30°C to +85°C  
+10°C to +85°C  
Cap. Change vs. A.C. Volts  
X7R  
Code  
Percent Capacity Change  
50  
40  
30  
20  
D
E
F
P
R
S
T
3.3ꢀ  
4.7ꢀ  
7.5ꢀ  
10ꢀ  
15ꢀ  
22ꢀ  
+22ꢀ, -33ꢀ  
+22ꢀ, - 56ꢀ  
+22ꢀ, -82ꢀ  
10  
0
U
V
EXAMPLE – A capacitor is desired with the capacitance value at 25°C  
to increase no more than 7.5ꢀ or decrease no more than 7.5ꢀ from  
-30°C to +85°C. EIA Code will be Y5F.  
12.5  
25  
37.5  
50  
Volts AC at 1.0 KHz  
Figure 2  
MIL CODE  
Capacitor specifications specify the AC voltage at which to  
measure (normally 0.5 or 1 VAC) and application of the  
wrong voltage can cause spurious readings.  
Symbol  
Temperature Range  
A
B
C
-55°C to +85°C  
-55°C to +125°C  
-55°C to +150°C  
Typical Cap. Change vs. Temperature  
X7R  
Cap. Change  
Zero Volts  
Cap. Change  
Rated Volts  
Symbol  
+20  
Q
R
W
X
+15ꢀ, -15ꢀ  
+15ꢀ, -15ꢀ  
+22ꢀ, -56ꢀ  
+15ꢀ, -15ꢀ  
+30ꢀ, -70ꢀ  
+20ꢀ, -20ꢀ  
+15ꢀ, -50ꢀ  
+15ꢀ, -40ꢀ  
+22ꢀ, -66ꢀ  
+15ꢀ, -25ꢀ  
+30ꢀ, -80ꢀ  
+20ꢀ, -30ꢀ  
+10  
0VDC  
0
-10  
-20  
Y
Z
Temperature characteristic is specified by combining range and change  
symbols, for example BR or AW. Specification slash sheets indicate the  
characteristic applicable to a given style of capacitor.  
-30  
-55 -35 -15 +5 +25 +45 +65 +85 +105 +125  
Temperature Degrees Centigrade  
In specifying capacitance change with temperature for Class  
2 materials, EIA expresses the capacitance change over an  
operating temperature range by a 3 symbol code. The  
first symbol represents the cold temperature end of the  
temperature range, the second represents the upper limit of  
the operating temperature range and the third symbol repre-  
sents the capacitance change allowed over the operating  
temperature range. Table 1 provides a detailed explanation of  
the EIA system.  
Figure 3  
61  
General Description  
Effects of Time – Class 2 ceramic capacitors change  
capacitance and dissipation factor with time as well as  
temperature, voltage and frequency. This change with time is  
known as aging. Aging is caused by a gradual re-alignment  
of the crystalline structure of the ceramic and produces an  
exponential loss in capacitance and decrease in dissipation  
factor versus time. A typical curve of aging rate for semi-  
stable ceramics is shown in Figure 4.  
Effects of Frequency – Frequency affects capacitance  
and impedance characteristics of capacitors. This effect is  
much more pronounced in high dielectric constant ceramic  
formulation than in low K formulations. AVXs SpiCalci  
software generates impedance, ESR, series inductance,  
series resonant frequency and capacitance all as functions  
of frequency, temperature and DC bias for standard chip  
sizes and styles. It is available free from AVX and can be  
downloaded for free from AVX website: www.avx.com.  
If a Class 2 ceramic capacitor that has been sitting on the  
shelf for a period of time, is heated above its curie point,  
1
(125°C for 4 hours or 150°C for   
2
hour will suffice) the part  
will de-age and return to its initial capacitance and dissi-  
pation factor readings. Because the capacitance changes  
rapidly, immediately after de-aging, the basic capacitance  
measurements are normally referred to a time period some-  
time after the de-aging process. Various manufacturers use  
different time bases but the most popular one is one day  
or twenty-four hours after “last heat.” Change in the aging  
curve can be caused by the application of voltage and  
other stresses. The possible changes in capacitance due to  
de-aging by heating the unit explain why capacitance changes  
are allowed after test, such as temperature cycling, moisture  
resistance, etc., in MIL specs. The application of high voltages  
such as dielectric withstanding voltages also tends to de-age  
capacitors and is why re-reading of capacitance after 12 or 24  
hours is allowed in military specifications after dielectric  
strength tests have been performed.  
Typical Curve of Aging Rate  
X7R  
+1.5  
Effects of Mechanical Stress – High “K” dielectric ceramic  
capacitors exhibit some low level piezoelectric reactions  
under mechanical stress. As a general statement, the piezo-  
electric output is higher, the higher the dielectric constant of  
the ceramic. It is desirable to investigate this effect before  
using high “K” dielectrics as coupling capacitors in extreme-  
ly low level applications.  
0
-1.5  
-3.0  
-4.5  
Reliability – Historically ceramic capacitors have been one  
of the most reliable types of capacitors in use today.  
The approximate formula for the reliability of a ceramic  
capacitor is:  
Lo  
Lt  
Vt  
X
Tt  
Y
-6.0  
-7.5  
=
ꢄ ꢄ  
V ꢄ  
T
o
o
where  
1
10  
100 1000 10,000 100,000  
Hours  
Lo = operating life  
Lt = test life  
Vt = test voltage  
Tt = test temperature and  
To = operating temperature  
in °C  
Characteristic Max. Aging Rate %/Decade  
None  
2
C0G (NP0)  
X7R, X5R  
Vo = operating voltage  
X,Y = see text  
Figure 4  
Historically for ceramic capacitors exponent X has been  
considered as 3. The exponent Y for temperature effects  
typically tends to run about 8.  
62  
General Description  
A capacitor is a component which is capable of storing  
electrical energy. It consists of two conductive plates (elec-  
trodes) separated by insulating material which is called the  
dielectric. A typical formula for determining capacitance is:  
Equivalent Circuit – A capacitor, as a practical device,  
exhibits not only capacitance but also resistance and  
inductance. A simplified schematic for the equivalent circuit is:  
C = Capacitance  
L = Inductance  
Rs = Series Resistance  
Rp = Parallel Resistance  
.224 KA  
C =  
t
RP  
C = capacitance (picofarads)  
K = dielectric constant (Vacuum = 1)  
A = area in square inches  
t = separation between the plates in inches  
(thickness of dielectric)  
L
R S  
.224 = conversion constant  
C
(.0884 for metric system in cm)  
Reactance – Since the insulation resistance (Rp) is  
normally very high, the total impedance of a capacitor is:  
Capacitance – The standard unit of capacitance is the  
farad. A capacitor has a capacitance of 1 farad when 1  
coulomb charges it to 1 volt. One farad is a very large unit  
2
2
Z = RS + (XC - XL)  
-6  
and most capacitors have values in the micro (10 ), nano  
where  
-9  
-12  
(10 ) or pico (10 ) farad level.  
Dielectric Constant – In the formula for capacitance given  
above the dielectric constant of a vacuum is arbitrarily cho-  
sen as the number 1. Dielectric constants of other materials  
are then compared to the dielectric constant of a vacuum.  
Z = Total Impedance  
Rs = Series Resistance  
XC = Capacitive Reactance =  
1
2 π fC  
Dielectric Thickness – Capacitance is indirectly propor-  
tional to the separation between electrodes. Lower voltage  
requirements mean thinner dielectrics and greater capaci-  
tance per volume.  
XL = Inductive Reactance = 2 π fL  
The variation of a capacitors impedance with frequency  
determines its effectiveness in many applications.  
Phase Angle – Power Factor and Dissipation Factor are  
often confused since they are both measures of the loss in  
a capacitor under AC application and are often almost iden-  
tical in value. In a “perfect” capacitor the current in the  
capacitor will lead the voltage by 90°.  
Area – Capacitance is directly proportional to the area of the  
electrodes. Since the other variables in the equation are  
usually set by the performance desired, area is the easiest  
parameter to modify to obtain a specific capacitance within  
a material group.  
Energy Stored – The energy which can be stored in a  
capacitor is given by the formula:  
I (Ideal)  
I (Actual)  
E = 1CV2  
2
Loss  
Phase  
Angle  
Angle  
E = energy in joules (watts-sec)  
V = applied voltage  
C = capacitance in farads  
f
Potential Change – A capacitor is a reactive component  
which reacts against a change in potential across it. This is  
shown by the equation for the linear charge of a capacitor:  
V
IR
s  
In practice the current leads the voltage by some other  
phase angle due to the series resistance RS. The comple-  
ment of this angle is called the loss angle and:  
dV  
dt  
Iideal  
=
C
where  
Power Factor (P.F.) = Cos or Sine  
Dissipation Factor (D.F.) = tan ꢂ  
I = Current  
C = Capacitance  
f
dV/dt = Slope of voltage transition across capacitor  
for small values of the tan and sine are essentially equal  
which has led to the common interchangeability of the two  
terms in the industry.  
Thus an infinite current would be required to instantly  
change the potential across a capacitor. The amount of  
current a capacitor can “sink” is determined by the above  
equation.  
63  
General Description  
Equivalent Series Resistance – The term E.S.R. or  
Equivalent Series Resistance combines all losses both series  
and parallel in a capacitor at a given frequency so that the  
equivalent circuit is reduced to a simple R-C series  
connection.  
Insulation Resistance – Insulation Resistance is the  
resistance measured across the terminals of a capacitor and  
consists principally of the parallel resistance RP shown in the  
equivalent circuit. As capacitance values and hence the area  
of dielectric increases, the I.R. decreases and hence the  
product (C x IR or RC) is often specified in ohm farads or  
more commonly megohm-microfarads. Leakage current is  
determined by dividing the rated voltage by IR (Ohms Law).  
E.S.R.  
C
Dielectric Strength – Dielectric Strength is an expression of  
the ability of a material to withstand an electrical stress.  
Although dielectric strength is ordinarily expressed in volts, it  
is actually dependent on the thickness of the dielectric and  
thus is also more generically a function of volts/mil.  
Dissipation Factor – The DF/PF of a capacitor tells what  
percent of the apparent power input will turn to heat in the  
capacitor.  
E.S.R.  
XC  
Dissipation Factor =  
= (2 π fC) (E.S.R.)  
Dielectric Absorption – A capacitor does not discharge  
instantaneously upon application of a short circuit, but drains  
gradually after the capacitance proper has been discharged.  
It is common practice to measure the dielectric absorption  
by determining the “reappearing voltage” which appears  
across a capacitor at some point in time after it has been fully  
discharged under short circuit conditions.  
The watts loss are:  
Watts loss = (2 π fCV2) (D.F.)  
Very low values of dissipation factor are expressed as their  
reciprocal for convenience. These are called the “Q” or  
Quality factor of capacitors.  
Corona – Corona is the ionization of air or other vapors  
which causes them to conduct current. It is especially  
prevalent in high voltage units but can occur with low voltages  
as well where high voltage gradients occur. The energy  
discharged degrades the performance of the capacitor and  
can in time cause catastrophic failures.  
Parasitic Inductance – The parasitic inductance of capac-  
itors is becoming more and more important in the decoupling  
of todays high speed digital systems. The relationship  
between the inductance and the ripple voltage induced on  
the DC voltage line can be seen from the simple inductance  
equation:  
di  
dt  
V = L  
di  
dt  
The  
seen in current microprocessors can be as high as  
0.3 A/ns, and up to 10A/ns. At 0.3 A/ns, 100pH of parasitic  
inductance can cause a voltage spike of 30mV. While this  
does not sound very drastic, with the Vcc for microproces-  
sors decreasing at the current rate, this can be a fairly large  
percentage.  
Another important, often overlooked, reason for knowing  
the parasitic inductance is the calculation of the resonant  
frequency. This can be important for high frequency, by-pass  
capacitors, as the resonant point will give the most signal  
attenuation. The resonant frequency is calculated from the  
simple equation:  
fres =  
1
2LC  
64  
Surface Mounting Guide  
MLC Chip Capacitors  
SOLDER PAD DESIGN  
millimeters (inches)  
D5  
Case Size  
0805  
D1  
D2  
D3  
D4  
3.00 (0.120)  
4.00 (0.160)  
4.00 (0.160)  
5.60 (0.220)  
5.60 (0.220)  
5.60 (0.220)  
6.60 (0.260)  
6.60 (0.260)  
6.60 (0.260)  
10.67 (0.427)  
10.67 (0.427)  
1.00 (0.040)  
1.00 (0.040)  
1.00 (0.040)  
1.00 (0.040)  
1.00 (0.040)  
1.00 (0.040)  
1.00 (0.040)  
1.00 (0.040)  
1.00 (0.040)  
1.52 (0.060)  
1.52 (0.060)  
1.00 (0.040)  
2.00 (0.090)  
2.00 (0.090)  
3.60 (0.140)  
3.60 (0.140)  
3.60 (0.140)  
4.60 (0.180)  
4.60 (0.180)  
4.60 (0.180)  
7.62 (0.300)  
7.62 (0.300)  
1.00 (0.040)  
1.00 (0.040)  
1.00 (0.040)  
1.00 (0.040)  
1.00 (0.040)  
1.00 (0.040)  
1.00 (0.040)  
1.00 (0.040)  
1.00 (0.040)  
1.52 (0.060)  
1.52 (0.060)  
1.25 (0.050)  
1.60 (0.060)  
2.50 (0.100)  
2.00 (0.080)  
3.00 (0.120)  
6.35 (0.250)  
5.00 (0.200)  
6.35 (0.250)  
6.35 (0.250)  
10.16 (0.400)  
10.16 (0.400)  
1206  
1210  
D2  
*1808  
*1812  
*1825  
*2220  
*2225  
*HQCC  
*3640  
*HQCE  
D1  
D3  
D4  
D5  
*AVX recommends reflow soldering only.  
Component Pad Design  
Preheat & Soldering  
Component pads should be designed to achieve good  
solder filets and minimize component movement during  
reflow soldering. Pad designs are given for the most common  
sizes of multilayer ceramic capacitors for both wave and  
reflow soldering. The basis of these designs is:  
The rate of preheat should not exceed 4°C/second to  
prevent thermal shock. A better maximum figure is about  
2°C/second.  
For capacitors size 1206 and below, with a maximum  
thickness of 1.25mm, it is generally permissible to allow a  
temperature differential from preheat to soldering of 150°C.  
In all other cases this differential should not exceed 100°C.  
• Pad width equal to component width. It is permissible to  
decrease this to as low as 85% of component width but it  
is not advisable to go below this.  
For further specific application or process advice, please  
consult AVX.  
• Pad overlap 0.5mm beneath component.  
• Pad extension 0.5mm beyond components for reflow and  
1.0mm for wave soldering.  
Component Spacing  
For wave soldering components, must be spaced sufficiently  
far apart to avoid bridging or shadowing (inability of solder to  
penetrate properly into small spaces). This is less important  
for reflow soldering but sufficient space must be allowed to  
enable rework should it be required.  
Cleaning  
Care should be taken to ensure that the capacitors are  
thoroughly cleaned of flux residues especially the space  
beneath the capacitor. Such residues may otherwise  
become conductive and effectively offer a low resistance  
bypass to the capacitor.  
Ultrasonic cleaning is permissible, the recommended  
conditions being 8 Watts/litre at 20-45 kHz, with a process  
cycle of 2 minutes vapor rinse, 2 minutes immersion in the  
ultrasonic solvent bath and finally 2 minutes vapor rinse.  
1.5mm (0.06)  
1mm (0.04)  
1mm (0.04)  
65  
Surface Mounting Guide  
MLC Chip Capacitors  
General  
APPLICATION NOTES  
Surface mounting chip multilayer ceramic capacitors  
are designed for soldering to printed circuit boards or other  
substrates. The construction of the components is such that  
they will withstand the time/temperature profiles used in both  
wave and reflow soldering methods.  
Storage  
Good solderability is maintained for at least twelve months,  
provided the components are stored in their “as received”  
packaging at less than 40°C and 70% RH.  
Solderability  
Handling  
Terminations to be well soldered after immersion in a 60/40  
tin/lead solder bath at 235 ± 5°C for 2 ± 1 seconds.  
Chip multilayer ceramic capacitors should be handled with  
care to avoid damage or contamination from perspiration  
and skin oils. The use of tweezers or vacuum pick ups  
is strongly recommended for individual components. Bulk  
handling should ensure that abrasion and mechanical shock  
are minimized. Taped and reeled components provides the  
ideal medium for direct presentation to the placement  
machine. Any mechanical shock should be minimized during  
handling chip multilayer ceramic capacitors.  
Leaching  
Terminations will resist leaching for at least the immersion  
times and conditions shown below.  
Solder  
Tin/Lead/Silver Temp. °C  
60/40/0 260 ± 5  
Solder  
Immersion Time  
Seconds  
Termination Type  
Nickel Barrier  
30 ± 1  
Preheat  
It is important to avoid the possibility of thermal shock during  
soldering and carefully controlled preheat is therefore  
required. The rate of preheat should not exceed 4°C/second  
and a target figure 2°C/second is recommended. Although  
an 80°C to 120°C temperature differential is preferred,  
recent developments allow a temperature differential  
between the component surface and the soldering temper-  
ature of 150°C (Maximum) for capacitors of 1210 size and  
below with a maximum thickness of 1.25mm. The user is  
cautioned that the risk of thermal shock increases as chip  
size or temperature differential increases.  
Recommended Soldering Profiles  
Reflow  
300  
Natural  
Cooling  
Preheat  
250  
200  
220°C  
150  
100  
50  
to  
250°C  
Soldering  
Mildly activated rosin fluxes are preferred. The minimum  
amount of solder to give a good joint should be used.  
Excessive solder can lead to damage from the stresses  
caused by the difference in coefficients of expansion between  
solder, chip and substrate. AVX terminations are suitable for  
all wave and reflow soldering systems. If hand soldering  
cannot be avoided, the preferred technique is the utilization of  
hot air soldering tools.  
0
1min  
(Minimize soldering time)  
10 sec. max  
1min  
Cooling  
Wave  
Natural cooling in air is preferred, as this minimizes stresses  
within the soldered joint. When forced air cooling is used,  
cooling rate should not exceed 4°C/second. Quenching  
is not recommended but if used, maximum temperature  
differentials should be observed according to the preheat  
conditions above.  
300  
Preheat  
Natural  
Cooling  
250  
200  
150  
100  
50  
T
Cleaning  
230°C  
to  
Flux residues may be hygroscopic or acidic and must be  
removed. AVX MLC capacitors are acceptable for use with all  
of the solvents described in the specifications MIL-STD-202  
and EIA-RS-198. Alcohol based solvents are acceptable  
and properly controlled water cleaning systems are also  
acceptable. Many other solvents have been proven successful,  
and most solvents that are acceptable to other components  
on circuit assemblies are equally acceptable for use with  
ceramic capacitors.  
250°C  
0
1 to 2 min  
3 sec. max  
(Preheat chips before soldering)  
T/maximum 150°C  
66  
Surface Mounting Guide  
MLC Chip Capacitors  
POST SOLDER HANDLING  
COMMON CAUSES OF  
Once SMP components are soldered to the board, any  
bending or flexure of the PCB applies stresses to the soldered  
joints of the components. For leaded devices, the stresses are  
absorbed by the compliancy of the metal leads and generally  
don’t result in problems unless the stress is large enough to  
fracture the soldered connection.  
MECHANICAL CRACKING  
The most common source for mechanical stress is board  
depanelization equipment, such as manual breakapart,  
v-cutters and shear presses. Improperly aligned or dull cutters  
may cause torqueing of the PCB resulting in flex stresses  
being transmitted to components near the board edge.  
Another common source of flexural stress is contact during  
parametric testing when test points are probed. If the PCB  
is allowed to flex during the test cycle, nearby ceramic  
capacitors may be broken.  
Ceramic capacitors are more susceptible to such stress  
because they don’t have compliant leads and are brittle in  
nature. The most frequent failure mode is low DC resistance or  
short circuit. The second failure mode is significant loss of  
capacitance due to severing of contact between sets of the  
internal electrodes.  
A third common source is board to board connections at  
vertical connectors where cables or other PCBs are con-  
nected to the PCB. If the board is not supported during the  
plug/unplug cycle, it may flex and cause damage to nearby  
components.  
Cracks caused by mechanical flexure are very easily identified  
and generally take one of the following two general forms:  
Special care should also be taken when handling large (>6"  
on a side) PCBs since they more easily flex or warp than  
smaller boards.  
REWORKING OF MLCs  
Thermal shock is common in MLCs that are manually  
attached or reworked with a soldering iron. AVX strongly  
recommends that any reworking of MLCs be done with hot  
air reflow rather than soldering irons. It is practically impossible  
to cause any thermal shock in ceramic capacitors when  
using hot air reflow.  
Type A:  
Angled crack between bottom of device to top of solder joint.  
However direct contact by the soldering iron tip often causes  
thermal cracks that may fail at a later date. If rework by  
soldering iron is absolutely necessary, it is recommended  
that the wattage of the iron be less than 30 watts and the  
tip temperature be <300ºC. Rework should be performed  
by applying the solder iron tip to the pad and not directly  
contacting any part of the ceramic capacitor.  
Type B:  
Fracture from top of device to bottom of device.  
Mechanical cracks are often hidden underneath the termina-  
tion and are difficult to see externally. However, if one end  
termination falls off during the removal process from PCB,  
this is one indication that the cause of failure was excessive  
mechanical stress due to board warping.  
67  
Surface Mounting Guide  
MLC Chip Capacitors  
Solder Tip  
Solder Tip  
Preferred Method - No Direct Part Contact  
Poor Method - Direct Contact with Part  
PCB BOARD DESIGN  
To avoid many of the handling problems, AVX recommends that MLCs be located at least .2" away from nearest edge of board.  
However when this is not possible, AVX recommends that the panel be routed along the cut line, adjacent to where the MLC  
is located.  
No Stress Relief for MLCs  
Routed Cut Line Relieves Stress on MLC  
68  
High Voltage MLC Chips  
For 600V to 5000V Application  
High value, low leakage and small size are difficult parameters to obtain in  
capacitors for high voltage systems. AVX special high voltage MLC chips  
capacitors meet these performance characteristics and are designed for  
applications such as snubbers in high frequency power converters,  
resonators in SMPS, and high voltage coupling/DC blocking. These high  
voltage chip designs exhibit low ESRs at high frequencies.  
Larger physical sizes than normally encountered chips are used to make  
high voltage chips. These larger sizes require that special precautions be  
taken in applying these chips in surface mount assemblies. This is due  
to differences in the coefficient of thermal expansion (CTE) between the  
substrate materials and chip capacitors. Apply heat at less than 4°C per  
second during the preheat. The preheat temperature must be within 50°C  
of the peak temperature reached by the ceramic bodies through the  
soldering process. Chips 1808 and larger to use reflow soldering only.  
Capacitors may require protective surface coating to prevent external  
arcing.  
HOW TO ORDER  
1808  
A
A
271  
K
A
1
1
A
Packaging  
1 = 7" Reel  
3 = 13" Reel  
9 = Bulk  
Special  
Code  
A = Standard  
AVX  
Voltage Temperature Capacitance Code  
Capacitance  
Tolerance  
Test  
Termination*  
Style  
600V = C Coefficient  
(2 significant digits  
+ no. of zeros)  
Examples:  
Level  
1 = Pd/Ag  
1206 1000V = A  
1210 1500V = S  
1808 2000V = G  
1812 2500V = W  
1825 3000V = H  
2220 4000V = J  
2225 5000V = K  
3640  
C0G = A  
X7R = C  
C0G: J = ±5% A = Standard T = Plated  
K = ±10%  
M = ±20%  
X7R: K = ±10%  
M = ±20%  
Ni and Sn  
J = 5% Min Pb  
10 pF = 100  
100 pF = 101  
1,000 pF = 102  
22,000 pF = 223  
220,000 pF = 224  
1 µF =105  
Z = +80%, -20%  
*Note: Leaded terminations are available.  
Styles 1825, 2225, & 3640 are available with “N”, “L” or “J” leads as seen on page 9.  
“V” denotes uncoated leaded units similar to SM0 product.  
“W” denotes leaded epoxy coated units similar to SM5 product.  
IE 1825AA103KAV00J would be uncoated leaded part with “J” style leads.  
Note: Capacitors with X7R dielectrics are not intended for applications across AC supply mains or AC line filtering with polarity reversal. Contact plant for recommendations.  
W
L
T
t
DIMENSIONS  
SIZE  
millimeters (inches)  
1206  
1210  
1808*  
1812*  
1825*  
2220*  
2225*  
3640*  
(L) Length  
3.20 ± 0.2  
3.20 ± 0.2  
4.57 ± 0.25  
4.50 ± 0.3  
4.50 ± 0.3  
5.7 ± 0.4  
5.72 ± 0.25  
9.14 ± 0.25  
(0.126 ± 0.008) (0.126 ± 0.008) (0.180 ± 0.010) (0.177 ± 0.012) (0.177 ± 0.012) (0.224 ± 0.016) (0.225 ± 0.010) (0.360 ± 0.010)  
1.60 ± 0.2 2.50 ± 0.2 2.03 ± 0.25 3.20 ± 0.2 6.40 ± 0.3 5.0 ± 0.4 6.35 ± 0.25 10.2 ± 0.25  
(0.063 ± 0.008) (0.098 ± 0.008) (0.080 ± 0.010) (0.126 ± 0.008) (0.252 ± 0.012) (0.197 ± 0.016) (0.250 ± 0.010) (0.400 ± 0.010)  
(W) Width  
(T) Thickness  
Max.  
1.52  
(0.060)  
1.70  
(0.067)  
2.03  
(0.080)  
2.54  
(0.100)  
2.54  
(0.100)  
3.3  
(0.130)  
2.54  
(0.100)  
2.54  
(0.100)  
(t) terminal  
min.  
max.  
0.25 (0.010)  
0.75 (0.030)  
0.25 (0.010)  
0.75 (0.030)  
0.25 (0.010)  
1.02 (0.040)  
0.25 (0.010)  
1.02 (0.040)  
0.25 (0.010)  
1.02 (0.040)  
0.25 (0.010)  
1.02 (0.040)  
0.25 (0.010)  
1.02 (0.040)  
0.76 (0.030)  
1.52 (0.060)  
*Reflow Soldering Only  
69  
High Voltage MLC Chips  
For 600V to 5000V Applications  
C0G Dielectric  
Performance Characteristics  
Capacitance Range  
10 pF to 0.047 µF  
(25°C, 1.0 ±0.2 Vrms at 1kHz, for 1000 pF use 1 MHz)  
Capacitance Tolerances  
±5%, ±10%, ±20%  
Dissipation Factor  
0.1% max. (+25°C, 1.0 ±0.2 Vrms, 1kHz, for 1000 pF use 1 MHz)  
-55°C to +125°C  
Operating Temperature Range  
Temperature Characteristic  
Voltage Ratings  
0 ±30 ppm/°C (0 VDC)  
600, 1000, 1500, 2000, 2500, 3000, 4000 & 5000 VDC (+125°C)  
100K Mmin. or 1000 M- µF min., whichever is less  
10K Mmin. or 100 M- µF min., whichever is less  
120% rated voltage for 5 seconds at 50 mA max. current  
Insulation Resistance (+25°C, at 500 VDC)  
Insulation Resistance (+125°C, at 500 VDC)  
Dielectric Strength  
HIGH VOLTAGE C0G CAPACITANCE VALUES  
VOLTAGE  
1206  
10 pF  
1210  
1808  
1812  
1825  
2220  
2225  
3640  
min.  
100 pF  
1500 pF  
10 pF  
820 pF  
10 pF  
330 pF  
10 pF  
150 pF  
100 pF  
2700 pF  
100 pF  
1500 pF  
10 pF  
470 pF  
10 pF  
270 pF  
10 pF  
150 pF  
10 pF  
100 pF  
10 pF  
39 pF  
100 pF  
5600 pF  
100 pF  
2700 pF  
10 pF  
1000 pF  
0.012 µF  
100 pF  
6800 pF  
100 pF  
2700 pF  
100 pF  
1800 pF  
10 pF  
1000 pF  
0.012 µF  
1000 pF  
0.010 µF  
100 pF  
2700 pF  
100 pF  
2200 pF  
100 pF  
1000 pF  
10 pF  
1000 pF  
0.015 µF  
1000 pF  
0.010 µF  
100 pF  
3300 pF  
100 pF  
2200 pF  
100 pF  
1200 pF  
10 pF  
1000 pF  
0.047 µF  
1000 pF  
0.018 µF  
100 pF  
600  
max.  
680 pF  
10 pF  
470 pF  
10 pF  
150 pF  
10 pF  
68 pF  
min.  
1000  
max.  
min.  
1500  
max.  
1000 pF  
10 pF  
8200 pF  
100 pF  
min.  
2000  
max.  
680 pF  
10 pF  
5600 pF  
100 pF  
min.  
2500  
max.  
390 pF  
10 pF  
1000 pF  
10 pF  
3900 pF  
100 pF  
min.  
3000  
max.  
330 pF  
10 pF  
680 pF  
10 pF  
680 pF  
10 pF  
820 pF  
10 pF  
2200 pF  
100 pF  
min.  
4000  
max.  
100 pF  
220 pF  
220 pF  
330 pF  
1000 pF  
10 pF  
min.  
5000  
max.  
680 pF  
X7R Dielectric  
Performance Characteristics  
Capacitance Range  
10 pF to 0.56 µF (25°C, 1.0 ±0.2 Vrms at 1kHz)  
±10%; ±20%; +80%, -20%  
2.5% max. (+25°C, 1.0 ±0.2 Vrms, 1kHz)  
-55°C to +125°C  
Capacitance Tolerances  
Dissipation Factor  
Operating Temperature Range  
Temperature Characteristic  
Voltage Ratings  
±15% (0 VDC)  
600, 1000, 1500, 2000, 2500, 3000, 4000 & 5000 VDC (+125°C)  
100K Mmin. or 1000 M- µF min., whichever is less  
10K Mmin. or 100 M- µF min., whichever is less  
120% rated voltage for 5 seconds at 50 mA max. current  
Insulation Resistance (+25°C, at 500 VDC)  
Insulation Resistance (+125°C, at 500 VDC)  
Dielectric Strength  
HIGH VOLTAGE X7R MAXIMUM CAPACITANCE VALUES  
VOLTAGE  
1206  
1210  
1808  
1812  
1825  
2220  
2225  
3640  
min.  
1000 pF  
0.015 µF  
100 pF  
5600 pF  
100 pF  
1800 pF  
10 pF  
1000pF  
1000 pF  
0.033 µF  
1000 pF  
0.015 µF  
100 pF  
3900 pF  
100 pF  
2200 pF  
1000 pF  
0.056 µF  
1000 pF  
0.018 µF  
100 pF  
6800 pF  
100 pF  
2700 pF  
10 pF  
1000 pF  
0.10 µF  
1000 pF  
0.027 µF  
100 pF  
0.012 µF  
100 pF  
4700 pF  
10 pF  
0.01 µF  
0.18 µF  
1000 pF  
0.10 µF  
1000 pF  
0.033 µF  
100 pF  
0.01 µF  
100 pF  
6800 pF  
100 pF  
4700 pF  
0.01 µF  
0.22 µF  
1000 pF  
0.10 µF  
1000 pF  
0.039 µF  
1000 pF  
0.01 µF  
100 pF  
8200 pF  
100 pF  
4700 pF  
0.01 µF  
0.22 µF  
1000 pF  
0.10 µF  
1000 pF  
0.047 µF  
1000 pF  
0.015 µF  
100 pF  
0.01 µF  
100 pF  
6800 pF  
0.01 µF  
0.56 µF  
0.01 µF  
0.22 µF  
1000 pF  
0.068 µF  
1000 pF  
0.027 µF  
1000 pF  
0.022 µF  
1000 pF  
0.018 µF  
100 pF  
600  
max.  
min.  
1000  
max.  
min.  
1500  
max.  
min.  
2000  
max.  
min.  
2500  
max.  
1800 pF  
10 pF  
3300 pF  
10 pF  
min.  
3000  
max.  
1500 pF  
2200 pF  
min.  
4000  
max.  
6800 pF  
100 pF  
3300 pF  
min.  
5000  
max.  
70  
®
Hi-Q High RF Power  
MLC Surface Mount Capacitors  
For 600V to 4000V Application  
PRODUCT OFFERING  
®
Hi-Q , high RF power, surface mount MLC capacitors from AVX  
Corporation are characterized with ultra-low ESR and dissipation factor  
at high frequencies. They are designed to handle high power and  
high voltage levels for applications in RF power amplifiers, inductive  
heating, high magnetic field environments (MRI coils), medical and  
industrial electronics.  
HOW TO ORDER  
HQCC  
A
A
271  
J
A
T
1
A
AVX  
Voltage Temperature Capacitance Code  
Capacitance  
Tolerance  
C = ±0.25pF (<13pF)  
D = ±0.50pF (<25pF)  
F = ±1% (25pF)  
G = ±2% (13pF)  
J = ±5%  
Test  
Termination  
Packaging  
Special  
Code  
Style  
600V = C Coefficient  
(2 significant digits  
+ no. of zeros)  
Examples:  
Level  
1 = Pd/Ag  
1 = 7" Reel  
HQCC 1000V = A  
HQCE 1500V = S  
2000V = G  
C0G = A  
A = Standard T = Plated  
3 = 13" Reel A = Standard  
9 = Bulk  
Ni and Sn  
J = 5% Min Pb  
4.7 pF = 4R7  
10 pF = 100  
100 pF = 101  
1,000 pF = 102  
2500V = W  
3000V = H  
4000V = J  
K = ±10%  
M = ±20%  
DIMENSIONS  
millimeters (inches)  
L
STYLE  
HQCC  
HQCE  
W
(L) Length  
5.84 ± 0.51  
9.4 ± 0.51  
(0.230 ± 0.020)  
(0.370 ± 0.020)  
(W) Width  
6.35 ± 0.51  
(0.250 ± 0.020)  
9.9 ± 0.51  
(0.390 ± 0.020)  
T
(T) Thickness  
Max.  
3.3 max.  
(0.130 max.)  
3.3 max.  
(0.130 max.)  
(t) terminal  
0.64 ± 0.38  
(0.025 ± 0.015)  
0.64 ± 0.38  
(0.025 ± 0.015)  
t
DIELECTRIC PERFORMANCE CHARACTERISTICS  
Capacitance Range  
4.7pF to 6,800pF  
(25°C, 1.0 ±0.2 Vrms at 1kHz, for 1000 pF use 1MHz)  
Capacitance Tolerances  
Dissipation Factor 25°C  
Operating Temperature Range  
Temperature Characteristic  
Voltage Ratings  
±0.25pF, ±0.50pF, ±1%, ±2%, ±5%, ±10%, ±20%  
0.1% Max (+25°C, 1.0 ±0.2 Vrms at 1kHz, for 1000 pF use 1MHz)  
-55°C to +125°C  
C0G: 0 ± 30 ppm/°C (-55°C to +125°C)  
600, 1000, 1500, 2000, 2500, 3000, 4000VDC  
100K Mmin. @ +25°C and 500VDC  
10K Mmin. @ +125°C and 500VDC  
120% of rated WVDC  
Insulation Resistance  
Dielectric Strength  
HIGH VOLTAGE CAPACITANCE VALUES (pF)  
600  
1000  
WVDC  
1500  
WVDC  
2000  
WVDC  
min./max.  
2500  
WVDC  
min./max.  
3000  
WVDC  
min./max.  
4000  
WVDC  
min./max.  
Style  
WDC  
min./max.  
min./max.  
min./max.  
HQCC  
HQCE  
2,200 - 2,700  
5,600 - 6,800  
1,500 - 1,800  
3,300 - 4,700  
820 - 1,200  
470 - 680  
330 - 390  
4.7 - 270  
470-680  
2,200 - 2,700  
1,200 - 1,800  
820 - 1,000  
4.7-390  
71  
®
Hi-Q High RF Power  
Ribbon Leaded MLC Capacitors  
®
Hi-Q , High RF Power, Ribbon Leaded MLC Capacitors from AVX  
Corporation are characterized with ultra-low ESR and dissipation factor  
at high frequencies. The HQL-style parts are constructed using non-  
magnetic materials. They are designed to handle high power and high  
voltage levels for applications in RF power amplifiers, inductive heating,  
high magnetic field environments (MRI coils), medical and industrial  
electronics.  
HOW TO ORDER  
HQLC  
A
A
271  
J
A
A
AVX  
Style  
HQLC  
HQLE  
Voltage  
600V = C  
Temperature  
Coefficient  
C0G = A  
Capacitance Code  
(2 significant digits  
+ no. of zeros)  
Examples:  
Capacitance  
Tolerance  
C = ±0.25pF (<13pF)  
D = ±0.50pF (<25pF)  
F = ±1% (25pF)  
G = ±2% (13pF)  
J = ±5%  
Test  
Level  
A = Standard  
Lead Style  
A = Axial Ribbon  
M = Microstrip  
1000V = A  
1500V = S  
2000V = G  
2500V = W  
3000V = H  
4000V = J  
4.7 pF = 4R7  
10 pF = 100  
100 pF = 101  
1,000 pF = 102  
K = ±10%  
M = ±20%  
Capacitance Range (pF)  
600  
Style  
1000  
WVDC  
1500  
WVDC  
2000  
WVDC  
2500  
WVDC  
3000  
WVDC  
4000  
WVDC  
WVDC  
min./max.  
min./max.  
1500 - 1800  
3300 - 4700  
min./max.  
820 - 1200  
2200 - 2700  
min./max.  
min./max.  
330 - 390  
820 - 1000  
min./max.  
4.7 - 270  
470 - 680  
min./max.  
HQLC  
HQLE  
2200 - 2700  
5600 - 6800  
470 - 680  
1200 - 1800  
4.7 - 390  
DIELECTRIC PERFORMANCE CHARACTERISTICS  
Capacitance Range  
4.7pF to 6,800pF  
(25°C, 1.0 ±0.2 Vrms at 1kHz, for 1000pF use 1MHz)  
Capacitance Tolerances  
Dissipation Factor  
±0.25pF, ±0.50pF, ±1%, ±2%, ±5%, ±10%, ±20%  
0.1% Max (+25°C, 1.0 ±0.2 Vrms at 1kHz, for 1000pF use 1MHz)  
-55°C to +125°C  
Operating Temperature Range  
Temperature Characteristics  
Voltage Ratings  
C0G: 0 ± 30 ppm/°C (-55°C to +125°C)  
600, 1000, 1500, 2000, 2500, 3000, 4000  
Insulation Resistance  
100K Mmin. @ +25°C and 500VDC  
10K Mmin. @ +125°C and 500VDC  
Dielectric Strength  
120% of rated WVDC  
72  
®
Hi-Q High RF Power  
Ribbon Leaded MLC Capacitors  
Microstrip Leads (Lead Style “M”)  
DIMENSIONS millimeters (inches)  
Unit  
Size  
L
L
Min.  
W
W
H
H
T
L
L
L
L
±0.51 (0.020)  
±0.64 (0.025)  
±0.38 (0.015)  
±0.64 (0.025)  
±0.38 (0.015)  
Ref.  
HQLC  
HQLE  
5.72 (0.225)  
9.40 (0.370)  
12.7 (0.500)  
19.1 (0.750)  
6.35 (0.250)  
10.2 (0.400)  
6.10 (0.240)  
8.89 (0.350)  
3.68 (0.145)  
3.68 (0.145)  
0.64 (0.025)  
0.64 (0.025)  
0.10 (0.004)  
0.25 (0.010)  
Note: Side to side lead alignment shall be within ±0.25 (0.010)  
Axial Ribbon Leads (Lead Style “A”)  
±0.51 (0.020)  
DIMENSIONS millimeters (inches)  
Unit  
Size  
L
L
Min.  
W
W
H
T
L
L
L
±0.51 (0.020)  
±0.64 (0.025)  
±0.38 (0.015)  
±0.64 (0.025)  
Ref.  
HQLC  
HQLE  
5.72 (0.225)  
9.40 (0.370)  
12.7 (0.500)  
19.1 (0.750)  
6.35 (0.250)  
10.2 (0.400)  
6.10 (0.240)  
8.89 (0.350)  
3.18 (0.125)  
3.18 (0.125)  
0.10 (0.004)  
0.25 (0.010)  
Note: Side to side lead alignment shall be within ±0.25 (0.010)  
73  
®
Hi-Q High RF Power  
MLC Capacitors  
PERFORMANCE CHARACTERISTICS  
Typical ESR vs. Capacitance  
HQCC and HQLC  
Typical Series Resonant Frequency vs. Capacitance  
HQCC and HQLC  
10000  
1.000  
0.100  
0010  
0.001  
13.56 MHz  
64 MHz  
250 MHz  
500 MHz  
1000  
100  
10  
1
10  
100  
1000  
10000  
1
10  
100  
1000  
10000  
Capacitance (pF)  
Capacitance (pF)  
Typical Quality Factor vs. Capacitance  
HQCC and HQLC  
Maximum RMS Current vs. Capacitance  
HQCC and HQLC  
1.00E+05  
1.00E+04  
1.00E+03  
1.00E+02  
1.00E+01  
1.00E+00  
100.0  
10.0  
1.0  
13.56 MHz  
64 MHz  
250 MHz  
500 MHz  
13.56 MHz  
64 MHz  
250 MHz  
500 MHz  
0.1  
1
10  
100  
1000  
10000  
1
10  
100  
1000  
10000  
Capacitance (pF)  
Capacitance (pF)  
74  
®
Hi-Q High RF Power  
MLC Capacitors  
PERFORMANCE CHARACTERISTICS  
Typical Series Resonant Frequency vs. Capacitance  
Typical ESR vs. Capacitance  
HQCE and HQLE  
HQCE and HQLE  
10000  
1.000  
0.100  
0.010  
0.001  
13.56 MHz  
64 MHz  
250 MHz  
500 MHz  
1000  
100  
10  
1
10  
100  
1000  
10000  
Capacitance (pF)  
1
10  
100  
1000  
10000  
Capacitance (pF)  
Typical Quality Factor vs. Capacitance  
HQCE and HQLE  
Maximum RMS Current vs. Capacitance  
HQCE and HQLE  
1.00E+05  
1.00E+04  
1.00E+03  
1.00E+02  
1.00E+01  
1.00E+00  
100.0  
10.0  
1.0  
13.56 MHz  
64 MHz  
250 MHz  
500 MHz  
13.56 MHz  
64 MHz  
250 MHz  
500 MHz  
0.1  
1
10  
100  
1000  
10000  
1
10  
100  
1000  
10000  
Capacitance (pF)  
Capacitance (pF)  
75  
Tip & Ring  
Multilayer Ceramic Chip Capacitors  
AVX “Tip & Ring” or “ring detector” Multilayer Ceramic Chip  
Capacitors are designed as a standard telecom filter  
to block -48 Volts DC telephone line voltage and pass  
subscribers AC signal pulse (16 to 25Hz, 70 to 90Vrms).  
The typical ringing signal is seen on figure on page 77. The  
ringer capacitors replace large leaded film capacitors and  
are ideal for telecom/modem applications. Using AVX “Tip &  
Ring” capacitors not only saves valuable real estate on the  
board and reduces the weight of overall product, but also  
features standard surface mounting capabilities, so critical to  
new and compact designs.  
The AVX “Tip & Ring” capacitors are offered in standard  
EIA sizes and standard values. They offer excellent high  
frequency performance, low ESR and improved temperature  
performance over film capacitors.  
HOW TO ORDER  
1812  
P
C
104  
K
A
T
1
A
AVX  
Style  
0805  
1206  
1210  
1808  
1812  
1825  
2220  
2225  
Voltage  
250 VDC  
Telco  
Temp  
Coefficient  
X7R  
Capacitance  
Code  
Capacitance  
Tolerance  
K = ±10%  
Test  
Level  
A = Standard  
Termination  
T = Plated  
Packaging  
1 = 7" Reel  
3 = 13" Reel  
9 = Bulk  
Special  
Code  
A = Standard  
(2 significant  
digits + no.  
of zeros)  
Ni and Sn  
Rating  
M = ±20%  
J = 5% Min Pb  
Examples:  
1,000 pF = 102  
22,000 pF = 223  
220,000 pF = 224  
1 µF = 105  
W
L
T
t
DIMENSIONS  
millimeters (inches)  
Style  
0805  
1206  
1210  
1808*  
1812*  
1825*  
2220*  
2225*  
(L) Length  
2.01 ± 0.20  
3.20 ± 0.20  
3.2 ± 0.20  
4.57 ± 0.25  
4.50 ± 0.30  
4.50 ± 0.30  
5.60 ± 0.30  
5.60 ± 0.25  
(0.079 ± 0.008) (0.126 ± 0.008) (0.126 ± 0.008) (0.180 ± 0.010) (0.177 ± 0.012) (0.177 ± 0.012) (0.220 ± 0.012) (0.220 ± 0.010)  
1.25 ± 0.20 1.60 ± 0.20 2.50 ± 0.20 2.03 ± 0.25 3.2 ± 0.20 6.34 ± 0.30 5.10 ± 0.40 6.35 ± 0.25  
(0.049 ± 0.008) (0.063 ± 0.008) (0.098 ± 0.008) (0.080 ± 0.010) (0.126 ± 0.008) (0.252 ± 0.012) (0.200 ± 0.016) (0.250 ± 0.010)  
(W)Width  
(T) Thickness  
(t) terminal  
1.30 max.  
(0.051 max.)  
1.50 max.  
(0.059 max.)  
1.70 max.  
(0.067 max.)  
1.52 max.  
(0.60 max.)  
2.00 max.  
(0.080 max.)  
2.00max.  
(0.080 max.)  
2.00 max.  
(0.080 max.)  
2.00 max.  
(0.080 max.)  
0.50 ± 0.25  
0.50 ± 0.25  
0.50 ± 0.25  
0.63 ± 0.38  
0.63 ± 0.38  
0.63 ± 0.38  
0.63 ± 0.38  
0.63 ± 0.38  
(0.020 ± 0.010) (0.020 ± 0.010) (0.020 ± 0.010) (0.025 ± 0.015) (0.025 ± 0.015) (0.025 ± 0.015) (0.025 ± 0.015) (0.025 ± 0.015)  
*Reflow Soldering Only  
76  
Tip & Ring  
Multilayer Ceramic Chip Capacitors  
CAPACITANCE RANGE (µF)  
Size  
0805  
1206  
1210  
1808  
1812  
1825  
2220  
2225  
min.  
max.  
0.0010  
0.022  
0.0010  
0.056  
0.0010  
0.1  
0.010  
0.22  
0.10  
0.47  
0.33  
1.0  
0.47  
1.0  
0.47  
1.2  
“TIP & RING” GRAPH  
250V  
Tip & Ring  
0
-48V  
-250V  
200ms/div  
1.6s  
-400ms  
PERFORMANCE CHARACTERISTICS  
Capacitance Range  
1000 pF to 1.2 µF  
±10%, ±20%  
(25°C, 1.0 ±0.2 Vrms at 1kHz)  
Capacitance Tolerances  
Dissipation Factor  
2.5% max. (25°C, 1.0 ±0.2 Vrms at 1kHz)  
X7R ±15% (0 VDC)  
Temperature Characteristic  
Voltage Rating  
250 VDC Telco rating  
Insulation Resistance (25°C, at 250 VDC)  
Dielectric Strength  
1000 megohm-microfarad min.  
250% rated voltage for 5 seconds at 50 mA max. current  
77  
MLC Chips  
Packaging of Chip Components  
AUTOMATIC INSERTION PACKAGING  
TAPE & REEL QUANTITIES  
All tape and reel specifications are in compliance with EIA481 or IEC-286-3.  
8mm  
12mm  
24mm  
0805  
1206  
1210  
1812, 1825  
2220, 2225, HQCC  
3640  
HQCE  
1808  
Qty. per Reel/7" Reel  
Qty. per Reel/13" Reel  
2000  
2000  
4000  
1000  
4000  
N/A  
10,000  
1000  
REEL DIMENSIONS  
DIMENSIONS  
millimeters (inches)  
Tape  
Size  
A
B*  
D*  
N
W2  
C
W1  
+1.5  
W3  
Max.  
Min.  
Min.  
Min.  
Max.  
7.9 Min.  
(0.311)  
10.9 Max.  
(0.429)  
8.4  
330  
(12.992)  
1.5  
(0.059)  
13.0±0.20  
(0.512±0.008)  
20.2  
(0.795)  
50  
(1.969)  
-0.0  
+.060  
-0.0  
14.4  
(0.567)  
8mm  
(0.331  
)
+2.0  
-0.0  
11.9 Min.  
(0.469)  
15.4 Max.  
(0.607)  
12.4  
18.4  
(0.724)  
330  
1.5  
13.0±0.20  
20.2  
50  
12mm  
(12.992)  
(0.059)  
(0.512±0.008)  
(0.795)  
(1.969)  
+.079  
(0.488  
)
-0.0  
+0.5  
13.0  
+2.0  
-0.0  
+.079  
-0.0  
23.9 Min.  
(0.941)  
27.4 Max.  
(1.079)  
24.4  
360  
1.5  
-0.2  
20.2  
(0.795)  
60  
(2.362)  
30.4  
(1.197)  
24mm
(14.173)  
(0.059)  
+.020  
(0.512  
)
(0.961  
)
-.008  
78  
Single-In-Line Packages (SIP)  
Capacitor Arrays  
SIP-style, MLC ceramic capacitor arrays are Single-In-Line,  
conformally coated packages. These capacitor networks  
incorporate multiple capacitors into a single substrate and,  
therefore, offer excellent TC tracking. The utilization of  
SIP capacitor arrays minimizes board real estate and  
reduces component count in the assembly. Various circuit  
configurations and capacitance/voltage values are available.  
Dimensions in millimeters (inches)  
STYLE 1  
(AVX STD OFFERING)  
STYLE C  
Length (Max.)  
3.429  
(0.135)  
Max.  
3.429  
(0.135)  
Max.  
Length = [# of Leads x 2.54 (0.100)]  
+ 1.27 (0.050)  
i.e., 10 Lead SIP = 26.67 (1.050)  
7.62 (0.300)  
Max.  
0.254  
(0.010)  
Typ.  
0.254  
(0.010)  
Typ.  
3.81  
(0.150) Min.  
0.508 (0.020) Typ.  
1.524 (0.060) Typ.  
2.54 (0.100) Typ.  
1
2
3
4
5
6
7
8
9
10  
1
2
3
4
5
6
7
8
9
10  
1
2
3
4
5
6
7
8
9
10  
CIRCUIT CONFIGURATION "A"  
ONE END LEAD GROUND  
CIRCUIT CONFIGURATION "B"  
ADJACENT LEAD PAIR CAPS  
CIRCUIT CONFIGURATION "C"  
BOTH END LEADS GROUND  
79  
Single-In-Line Packages (SIP)  
Capacitor Arrays  
HOW TO ORDER  
SP  
A
1
1
A
561  
K
A
A
AVX Style  
Circuit  
See Page 79  
(A, B, C)  
Lead  
Style  
Offset = 1  
Centered = C  
Voltage  
Temperature  
Coefficient  
C0G = A  
Capacitance  
Code  
(2 significant  
digits + no.  
Capacitance  
Tolerance  
C0G: K = ±10%  
M = ±20%  
Test  
Number of  
Leads  
2 = 2  
Level  
50V = 5  
100V = 1  
A = Standard  
X7R = C  
3 = 3  
Z5U = E  
of zero)  
X7R: K = ±10%  
M = ±20%  
Z = +80%,-20%  
Z5U: M = ±20%  
Z = +80%,-20%  
P = GMV  
(+100,-0%)  
4 = 4  
5 = 5  
6 = 6  
7 = 7  
8 = 8  
9 = 9  
A = 10  
B = 11  
C = 12  
D = 13  
E = 14  
10 pF = 100  
100 pF = 101  
1,000 pF = 102  
22,000 pF = 223  
220,000 pF = 224  
1 µF = 105  
10 µF = 106  
100 µF = 107  
*For dimensions, voltages, or capacitance values not specified, please contact factory.  
Maximum Capacitance*  
50V  
100V  
C0G  
X7R  
Z5U  
2200 pF  
0.10 µF  
0.39 µF  
1500 pF  
0.033 µF  
0.10 µF  
AVX IS QUALIFIED TO THE FOLLOWING DSCC DRAWINGS  
SPECIFICATION #  
DESCRIPTION  
BX-100 VDC  
C0G-100 VDC  
BX-100 VDC  
C0G-100 VDC  
BX-100 VDC  
BX-100 VDC  
C0G-100 VDC  
CIRCUIT  
LEADS  
CAPACITANCE RANGE  
87112  
A
A
C
C
B
A
B
8
8
1000 pF  
10 pF  
-
-
-
0.1 µF  
820 pF  
0.1 µF  
87116  
87119  
10  
10  
8
1000 pF  
87120  
10 pF - 1000 pF  
87122  
1000 pF  
1000 pF  
10 pF  
-
-
-
0.1 µF  
0.1 µF  
820 pF  
88019  
10  
8
89086  
80  
Discoidal MLC  
Feed-Through Capacitors and Filters  
DC Style (US Preferred Sizes) / XB Style (European Preferred Sizes)  
XF Style (Feed-Through Discoidal)  
APPLICATION INFORMATION ON DISCOIDAL  
LOWEST CAPACITANCE IMPEDANCES TO GROUND  
A discoidal MLC capacitor has very low impedance associated with its ground path  
since the signal is presented with a multi-directional path. These electrode paths,  
which can be as many as 100, allow for low ESR and ESL which are the major ele-  
ments in impedance at high frequencies.  
The assembled discoidal element or feed-thru allows signal to be fed in through a  
chassis or bulkhead, conditioned as it passes through the discoidal, and isolated by  
the chassis and discoidal from the original signal. An example of this application  
would be in an AFT circuit where the AC noise signal would be required to be  
stripped from the DC control signal. Other applications include single line EMI/RFI  
suppression, L-C filter construction, and coaxial shield bypass filtering.  
OD*  
The shape of the discoidal lends itself to filter construction. The short length allows  
ID  
compact construction where L-C construction is desired.  
The size freedom associated with this element allows almost any inside/  
T Max.  
outside diameter combination. By allowing the inside diameter to equal  
the center insulator diameter of a coaxial signal line and special termination tech-  
niques, this device will allow bypass filtering of a floating shield to ground.  
These surfaces are metallized  
.127 (0.005). minimum wide except  
for DC61, DC26 and DC63  
where metallized surfaces  
Discoidal capacitors are available in three temperature coefficients (C0G, X7R, Z5U)  
and a variety of sizes, the most standard of which appear in this catalog.  
INSERTION LOSS  
are .127 (0.005) maximum.  
0
-10  
+
*Tol. = .254 (0.010) or 3ꢀ, whichever is greater  
-
SINGLE CHIP  
-20  
AVX’s DC Series 50V, 100V, 200V, C0G  
-30  
and X7R parts are capable of meeting  
the requirements of MIL-PRF-31033.  
-40  
DISCOIDAL  
-50  
-60  
-70  
-80  
0
100 200 300 400 500 600 700 800 900 1000  
f (MHz)  
ELECTRICAL SPECIFICATIONS  
Temperature Coefficient  
Insulation Resistance 125°C (MIL-STD-202 Method 302)  
C0G and X7R: 10K Mor 100 MF, whichever is less.  
Z5U: 1K Mor 100 MF, whichever is less.  
Dielectric Withstanding Voltage 25°C (Flash Test)*  
C0G and X7R: 250% rated voltage for 5 seconds with 50 mA max  
charging current. 500V rated units will be tested at 750 VDC  
Z5U: 200% rated voltage for 5 seconds with 50 mA max charging current.  
Life Test (1000 hrs)  
C0G and X7R: 200% rated voltage at +125°C (500 Volt units  
@ 600 VDC)  
Z5U: 150% rated voltage at +85°C  
Moisture Resistance (MIL-STD-202 Method 106)  
C0G, X7R, Z5U: Ten cycles with no voltage applied.  
Thermal Shock (MIL-STD-202 Method 107, Condition A)  
Immersion Cycling (MIL-STD-202 Method 104, Condition B)  
C0G: A Temperature Coefficient - 0 ±30 ppm/°C, -55° +125°C  
X7R: C Temperature Coefficient - ±15%, -55° to +125°C  
Z5U: E Temperature Coefficient - +22, -56%, +10° to +85°C  
Capacitance Test (MIL-STD-202 Method 305)  
C0G: 25°C, 1.0±0.2 Vrms at 1KHz, for 100 pF use 1 MHz  
X7R: 25°C, 1.0±0.2 Vrms at 1KHz  
Z5U: 25°C, 0.5 Vrms max at 1KHz  
Dissipation Factor 25°C  
C0G: 0.15% Max @ 25°C, 1.0±0.2 Vrms at 1KHz, for 100 pF use 1 MHz  
X7R: 2.5% Max @ 25°C, 1.0±0.2 Vrms at 1KHz  
Z5U: 3.0% Max @ 25°C, 0.5 Vrms max at 1KHz  
Insulation Resistance 25°C (MIL-STD-202 Method 302)  
C0G and X7R: 100K Mor 1000 MF, whichever is less.  
Z5U: 10K Mor 1000 MF, whichever is less.  
HOW TO ORDER  
DC61  
5
A
561  
K
A
5
1
06  
AVX  
Voltage Temperature  
Capacitance Code  
(2 significant digits  
+ no. of zeros)  
Examples:  
Capacitance  
Tolerance  
C0G: J = ±5%  
K = ±10%  
Test  
Termination  
Inside  
Maximum  
Thickness  
Style  
50V = 5 Coefficient  
Level  
5 = Silver  
Diameter  
See Pages 100V = 1  
82-84  
C0G = A  
X7R = C  
Z5U = E  
A = Standard (AVX Standard) See Pages 06 = 1.52 (0.060)  
200V = 2  
500V = 7  
82-84  
10 = 2.54 (0.100)  
M = ±20%  
10 pF = 100  
X7R: K = ±10%  
M = ±20%  
Z5U: M = ±20%  
100 pF = 101  
1,000 pF = 102  
22,000 pF = 223  
220,000 pF = 224  
1 µF = 105  
Z = +80 -20%  
P = GMV  
For dimensions, voltages or values not specified, please consult factory.  
81  
Discoidal MLC  
Feed-Through Capacitors and Filters  
DC Style  
SIZE AND CAPACITANCE SPECIFICATIONS  
Dimensions: millimeters (inches)  
EIA  
Characteristic  
C0G  
AVX Style  
DC61  
DC26  
DC63  
DC04  
DC65  
DC66  
DC67  
DC69  
DC32  
DC70  
DC02  
DC71  
DC05  
DC73  
DC72  
Outside  
Diameter  
2.54  
(0.100)  
3.43  
(0.135)  
3.81  
(0.150)  
4.83  
(0.190)  
5.33  
(0.210)  
5.97  
(0.235)  
6.73  
(0.265)  
8.13  
(0.320)  
8.51  
(0.335)  
8.89  
(0.350)  
9.40  
(0.370)  
9.78  
(0.385)  
12.70  
(0.500)  
15.24  
(0.600)  
16.26  
(0.640)  
(OD)*  
Thickness  
Maximum  
1.52  
(0.060)  
1.52  
(0.060)  
1.52  
(0.060)  
2.54  
(0.100)  
2.54  
(0.100)  
2.54  
(0.100)  
2.54  
(0.100)  
2.54  
(0.100)  
2.54  
(0.100)  
2.54  
(0.100)  
2.54  
(0.100)  
2.54  
(0.100)  
2.54  
(0.100)  
2.54  
(0.100)  
2.54  
(0.100)  
(T)  
Inside  
Diameter No.  
5,6,7  
1,2,3,4  
5,6,7  
1,2,3,4  
5,6,7  
1,2,3,4  
5,6,7  
1,2,3,4  
5,6,7  
1,2,3,4  
5,6,7  
1,2,3,4  
5,6,7  
1,2,3,4  
5,6,7  
1,2,3,4  
5,6,7  
1,2,3,4  
5,6,7  
1,2,3,4  
5,6,7  
1,2,3,4  
(ID)  
1,2  
1,2,3  
1,2,3,4  
1,2,3  
Voltage  
cap. in pF  
10  
12  
15  
18  
22  
27  
33  
39  
47  
56  
68  
82  
100  
120  
150  
180  
220  
270  
330  
390  
470  
560  
680  
820  
1000  
1200  
1500  
1800  
2200  
2700  
3300  
3900  
4700  
5600  
6800  
8200  
10,000  
12,000  
15,000  
18,000  
22,000  
27,000  
33,000  
39,000  
47,000  
56,000  
68,000  
82,000  
100,000  
120,000  
150,000  
180,000  
220,000  
270,000  
330,000  
390,000  
470,000  
560,000  
680,000  
Inside Diameter:  
*Outside Diameter:  
Tolerance is ±0.254 (0.010) or 3%  
whichever is greater  
5 = 1.27±.127 (0.050±.005)  
6 = 1.52±.127 (0.060±.005)  
7 = 1.73±.127 (0.068±.005)  
+.127  
+.005  
+.127  
-.051  
+.127  
-.051  
+.005  
1 = .635  
2 = .762  
(.025  
(.030  
)
3 = .914  
4 = 1.07  
(.036  
(.042  
)
)
-.051  
+.127  
-.051  
-.002  
+.005  
-.002  
-.002  
+.005  
-.002  
)
82  
Discoidal MLC  
Feed-Through Capacitors and Filters  
DC Style  
SIZE AND CAPACITANCE SPECIFICATIONS  
Dimensions: millimeters (inches)  
EIA  
X7R  
Characteristic  
AVX Style  
DC61  
DC26  
DC63  
DC04  
DC65  
DC66  
DC67  
DC69  
DC32  
DC70  
DC02  
DC71  
DC05  
DC73  
DC72  
Outside  
2.54  
3.43  
3.81  
4.83  
5.33  
5.97  
6.73  
8.13  
8.51  
8.89  
9.40  
9.78  
12.70  
15.24  
16.26  
(OD)*  
(T)  
Diameter  
(0.100)  
(0.135)  
(0.150)  
(0.190)  
(0.210)  
(0.235)  
(0.265)  
(0.320)  
(0.335)  
(0.350)  
(0.370)  
(0.385)  
(0.500)  
(0.600)  
(0.640)  
Thickness  
Maximum  
1.52  
(0.060)  
1.52  
(0.060)  
1.52  
(0.060)  
2.54  
(0.100)  
2.54  
(0.100)  
2.54  
(0.100)  
2.54  
(0.100)  
2.54  
(0.100)  
2.54  
(0.100)  
2.54  
(0.100)  
2.54  
(0.100)  
2.54  
(0.100)  
2.54  
(0.100)  
2.54  
(0.100)  
2.54  
(0.100)  
Inside  
Diameter No.  
5,6,7  
1,2,3,4  
5,6,7  
1,2,3,4  
5,6,7  
1,2,3,4  
5,6,7  
1,2,3,4  
5,6,7  
1,2,3,4  
5,6,7  
1,2,3,4  
5,6,7  
1,2,3,4  
5,6,7  
1,2,3,4  
5,6,7  
1,2,3,4  
5,6,7  
1,2,3,4  
5,6,7  
1,2,3,4  
(ID)  
1,2  
1,2,3  
1,2,3,4  
1,2,3  
Voltage  
cap. in pF  
56  
68  
82  
100  
120  
150  
180  
220  
270  
330  
390  
470  
560  
680  
820  
1000  
1200  
1500  
1800  
2200  
2700  
3300  
3900  
4700  
5600  
6800  
8200  
10,000  
12,000  
15,000  
18,000  
22,000  
27,000  
33,000  
39,000  
47,000  
56,000  
68,000  
82,000  
100,000  
120,000  
150,000  
180,000  
220,000  
270,000  
330,000  
390,000  
470,000  
560,000  
680,000  
820,000  
1.0 µF  
1.2 µF  
1.5 µF  
1.8 µF  
2.2 µF  
2.7 µF  
3.3 µF  
3.9 µF  
6.8 µF  
Inside Diameter:  
*Outside Diameter:  
Tolerance is ±0.254 (0.010) or 3%  
whichever is greater  
5 = 1.27±.127 (0.050±.005)  
6 = 1.52±.127 (0.060±.005)  
7 = 1.73±.127 (0.068±.005)  
+.127  
+.005  
+.127  
-.051  
+.127  
-.051  
+.005  
1 = .635  
2 = .762  
(.025  
(.030  
)
3 = .914  
4 = 1.07  
(.036  
(.042  
)
-.051  
+.127  
-.051  
-.002  
+.005  
-.002  
-.002  
+.005  
-.002  
)
)
83  
Discoidal MLC  
Feed-Through Capacitors and Filters  
DC Style  
SIZE AND CAPACITANCE SPECIFICATIONS  
Dimensions: millimeters (inches)  
EIA  
Characteristic  
Z5U  
AVX Style  
DC61  
DC26  
DC63  
DC04  
DC65  
DC66  
DC67  
DC69  
DC32  
DC70  
DC02  
DC71  
DC05  
DC73  
DC72  
Outside  
Diameter  
2.54  
(0.100)  
3.43  
(0.135)  
3.81  
(0.150)  
4.83  
(0.190)  
5.33  
(0.210)  
5.97  
(0.235)  
6.73  
(0.265)  
8.13  
(0.320)  
8.51  
(0.335)  
8.89  
(0.350)  
9.40  
(0.370)  
9.78  
(0.385)  
12.70  
(0.500)  
15.24  
(0.600)  
16.26  
(0.640)  
(OD)*  
Thickness  
Maximum  
1.52  
(0.060)  
1.52  
(0.060)  
1.52  
(0.060)  
2.54  
(0.100)  
2.54  
(0.100)  
2.54  
(0.100)  
2.54  
(0.100)  
2.54  
(0.100)  
2.54  
(0.100)  
2.54  
(0.100)  
2.54  
(0.100)  
2.54  
(0.100)  
2.54  
(0.100)  
2.54  
(0.100)  
2.54  
(0.100)  
(T)  
Inside  
Diameter No.  
5,6,7  
1,2,3,4  
5,6,7  
1,2,3,4  
5,6,7  
1,2,3,4  
5,6,7  
1,2,3,4  
5,6,7  
1,2,3,4  
5,6,7  
1,2,3,4  
5,6,7  
1,2,3,4  
5,6,7  
1,2,3,4  
5,6,7  
1,2,3,4  
5,6,7  
1,2,3,4  
5,6,7  
1,2,3,4  
(ID)  
1,2  
1,2,3  
1,2,3,4  
1,2,3  
Voltage  
cap. in pF  
1800  
2200  
2700  
3300  
3900  
4700  
5600  
6800  
8200  
10,000  
12,000  
15,000  
18,000  
22,000  
27,000  
33,000  
39,000  
47,000  
56,000  
68,000  
82,000  
100,000  
120,000  
150,000  
180,000  
220,000  
270,000  
330,000  
390,000  
470,000  
560,000  
680,000  
820,000  
1.0 µF  
1.2 µF  
1.5 µF  
1.8 µF  
2.2 µF  
2.7 µF  
3.3 µF  
3.9 µF  
4.7 µF  
5.6 µF  
6.8 µF  
8.2 µF  
10.0 µF  
12.0 µF  
15.0 µF  
Inside Diameter:  
*Outside Diameter:  
Tolerance is ±0.254 (0.010) or 3%  
whichever is greater  
5 = 1.27±.127 (0.050±.005)  
6 = 1.52±.127 (0.060±.005)  
7 = 1.73±.127 (0.068±.005)  
+.127  
+.005  
)
+.127  
-.051  
+.127  
-.051  
+.005  
1 = .635  
2 = .762  
(.025  
(.030  
3 = .914  
4 = 1.07  
(.036  
(.042  
)
-.051  
+.127  
-.051  
-.002  
-.002  
+.005  
-.002  
+.005  
)
)
-.002  
84  
Discoidal MLC  
Feed-Through Capacitors and Filters  
Discoidal XB / Feed-through XF – C0G  
HOW TO ORDER  
XB  
06  
Z
G
0104  
K
--  
AVX Style  
Size  
03  
04  
Class  
C = NP0  
Z = X7R  
Voltage  
D = 63  
E = 100  
Capacitance  
EIA code  
on 3 or 4  
digits  
Tolerance  
J = 5%  
K = 10%  
M = 20%  
Packaging  
-- : bulk  
XB  
XF  
06  
F = 160  
07  
08  
G = 250  
I = 400  
09  
J = 500 (optional)  
10  
14  
15  
REFERENCES  
Type  
Terminations  
Reference  
Mechanical Characteristics  
bm  
Silver  
XB..C•....• --  
XB..C•....• MB  
XF..C•....• --  
palladium  
OD  
CECC 30600  
MIL 11015 D  
Conformance  
to  
ID  
Tinned  
silver palladium  
bm  
Ø
e
Silver  
palladium  
OD  
CK12  
TYPE  
Tinned  
silver palladium  
e
XF..C•....• MB  
20  
(0.787) (0.787)  
min. min.  
20  
DIMENSIONS  
millimeters (inches)  
e
OD  
ID  
bm  
Ø
Size  
XB/XF  
XB/XF...MB  
XB  
0.7 ± 0.15  
XB...MB  
min  
(XF)  
min  
max  
03  
3.8 ± 0.3  
4.1 ± 0.4  
> 0.4  
(> 0.016)  
0.1  
(0.004)  
0.5  
(0.020)  
1
See  
table  
(0.150 ± 0.012) (0.161 ± 0.016) (0.028 ± 0.006)  
04  
08  
3.8 ± 0.3  
1.2 ± 0.15  
0.1  
1
1
on  
(0.150 ± 0.012)  
(0.047 ± 0.006)  
(0.004)  
page  
7.9 ± 0.3  
8.2 ± 0.4  
0.8 ± 0.15  
> 0.5  
(> 0.020)  
0.2  
(0.008)  
0.6  
(0.024)  
86  
(0.311 ± 0.012) (0.323 ± 0.016) (0.031 ± 0.006)  
ELECTRICAL CHARACTERISTICS  
Dielectric Class  
C0G  
0 ± 30 ppm/°C  
Temperature Coefficient  
Climatic Category  
Operating Temperature  
-55 / 125 / 56  
-55 +125°C  
Rated Voltage (UR)  
Test Voltage (Ue)  
50 to 400V  
2.5 UR  
Tangent of Loss Angle  
C < 50 pF  
150  
tg δ < 1.5  
+ 7 10-4  
(
)
CR  
C 50 pF  
tg δ < 15(10-4)  
Insulation Resistance  
Ri 100 GΩ  
85  
Discoidal MLC  
Feed-Through Capacitors and Filters  
Discoidal XB / Feed-through XF – C0G  
RATED VOLTAGE – RATED CAPACITANCES  
Size  
03  
04  
08  
F
Capacitance  
CR  
Rated Voltage - UR (V)/Ur code  
D
D
10 pF  
15 pF  
22 pF  
33 pF  
47 pF  
68 pF  
100 pF  
150 pF  
220 pF  
330 pF  
470 pF  
680 pF  
1000 pF  
1500 pF  
2200 pF  
3300 pF  
4700 pF  
6800 pF  
10 nF  
15 nF  
22 nF  
33 nF  
47 nF  
68 nF  
100 nF  
Thimckmn(einscshees)max  
1.4 (0.055)  
1.4 (0.055)  
1.8 (0.071)  
• other values, please contact us  
• for tinned types, add 0.5 (0.020) to emax  
86  
Discoidal MLC  
Feed-Through Capacitors and Filters  
Discoidal XB / Feed-through XF – X7R  
REFERENCES  
Type  
Terminations  
Reference  
Mechanical Characteristics  
bm  
Silver  
palladium  
XB..Z•....• --  
OD  
ID  
bm  
CECC 30700  
MIL 11015 D  
Conformance  
Tinned  
silver palladium  
XB..Z•....• MB  
e
Ø
to  
Silver  
palladium  
XF..Z•....• --  
OD  
CK12, CK13, CK14  
TYPES  
Tinned  
silver palladium  
e
XF..Z•....• MB  
20  
20  
(0.787) (0.787)  
min. min.  
DIMENSIONS  
millimeters (inches)  
OD  
ID  
bm  
Ø
e
Size  
XB/XF  
XB/XF...MB  
XB  
XB...MB  
min  
(XF)  
min  
1.0  
max  
3.8 ± 0.3  
4.1 ± 0.4  
0.7 ± 0.15  
(0.028 ± 0.006)  
1.2 ± 0.15  
> 0.4  
0.1  
(0.004)  
0.1  
0.5  
03  
(0.150 ± 0.012) (0.161 ± 0.016)  
(> 0.016)  
(0.020)  
(0.039)  
1.0  
3.8 ± 0.3  
04  
06  
07  
08  
09  
10  
14  
15  
(0.150 ± 0.012)  
(0.047 ± 0.006)  
1.7 ± 0.15  
(0.004)  
0.2  
(0.039)  
1.0  
6.4 ± 0.3  
6.7 ± 0.4  
> 0.5  
(> 0.020)  
> 0.5  
0.6  
(0.024)  
0.6  
See  
(0.252 ± 0.012) (0.264 ± 0.016)  
7.3 ± 0.3 7.6 ± 0.4  
(0.287 ± 0.012) (0.299 ± 0.016)  
7.9 ± 0.3 8.2 ± 0.4  
(0.311 ± 0.012) (0.323 ± 0.016)  
8.4 ± 0.4 8.7 ± 0.5  
(0.331 ± 0.016) (0.343 ± 0.020)  
9.6 ± 0.4 9.9 ± 0.5  
(0.378 ± 0.016) (0.390 ± 0.020)  
14.0 ± 0.5 14.3 ± 0.6  
(0.551 ± 0.020) (0.563 ± 0.024)  
15.0 ± 0.5 15.3 ± 0.6  
(0.591 ± 0.020) (0.602 ± 0.024)  
(0.067 ± 0.006)  
1.7 ± 0.15  
(0.008)  
0.2  
(0.039)  
1.0  
table  
on  
page  
(0.067 ± 0.006)  
0.8 ± 0.15  
(> 0.020)  
> 0.5  
(0.008)  
0.2  
(0.024)  
0.6  
(0.039)  
1.0  
(0.031 ± 0.006)  
1.6 ± 0.3  
(> 0.020)  
> 0.5  
(0.008)  
0.2  
(0.024)  
0.6  
(0.039)  
1.0  
88  
(0.063 ± 0.012)  
1.2 ± 0.15  
(> 0.020)  
> 0.9  
(0.008)  
0.2  
(0.024)  
1.0  
(0.039)  
1.0  
(0.047 ± 0.006)  
1.7 ± 0.3  
(> 0.035)  
> 0.9  
(0.008)  
0.2  
(0.039)  
1.0  
(0.039)  
1.0  
(0.067 ± 0.012)  
2.3 ± 0.3  
(> 0.035)  
> 0.9  
(0.008)  
0.2  
(0.039)  
1.0  
(0.039)  
1.0  
(0.091 ± 0.012)  
(> 0.035)  
(0.008)  
(0.039)  
(0.039)  
ELECTRICAL CHARACTERISTICS  
Dielectric Class  
X7R  
Temperature Coefficient  
C/C ± 15% (-55 +125°C)  
Climatic Category  
Operating Temperature  
-55 / 125 / 56  
-55 +125°C  
Rated Voltage (UR)  
Test Voltage (Ue)  
50 to 400V  
2.5 UR  
tg δ 250(10-4)  
Tangent of Loss Angle  
Insulation Resistance  
C 10 nF  
Ri 100 GΩ  
Ri xC 1000s  
C > 10 nF  
87  
Discoidal MLC  
Feed-Through Capacitors and Filters  
Discoidal XB / Feed-through XF – X7R  
RATED VOLTAGE – RATED CAPACITANCES  
Size  
03-04  
D
06  
07  
08-09  
UR- (V)/Code UR  
10  
F
14-15  
Capacitance  
CR  
D
E
F
G
D E F G  
I
D
E
F G  
I
D E  
G
I
D E  
F G I  
100 pF  
150 pF  
220 pF  
330 pF  
470 pF  
680 pF  
1000 pF  
1500 pF  
2200 pF  
3300 pF  
4700 pF  
6800 pF  
10 nF  
15 nF  
22 nF  
33 nF  
47 nF  
68 nF  
100 nF  
150 nF  
220 nF  
330 nF  
470 nF  
680 nF  
1 µF  
1.5 µF  
2.2 µF  
3.3 µF  
4.7 µF  
1.4  
(0.055)  
2
0.079)  
2
0.079)  
2
0.079)  
2
0.079)  
3
0.118)  
3
0.118)  
3
0.118)  
3
0.118)  
3
0.118)  
1.8  
0.071)  
3
0.118)  
1.8  
0.071)  
3
0.118)  
3
0.118)  
3
0.118)  
3
0.118)  
3
0.118)  
3
0.118)  
3
0.118)  
3.5 3.5 3.5 3.5 3.5  
emax mm (inches)  
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(0.138)  
(0.138)  
(0.138)  
(
0.138) (0.138)  
• other values, please contact us  
• for tinned types, add 0.5 (0.020) to emax  
88  
Filtered Arrays  
XD... Type  
FEATURES  
To be used beneath a connector  
• Provide an EMI filtered signal line between electronic modules  
• Effective insertion loss from 1MHz up to ~ 1GHz  
• Surface mount compatible  
HOW TO ORDER  
XD  
06  
Z
F
0153  
K
--  
AVX Style  
Size  
03  
06  
Class  
C = NP0  
Z = X7R  
Voltage  
F = 200  
J = 500  
Capacitance  
EIA code  
on 3 or 4  
digits  
Tolerance  
Packaging  
SUFFIX  
Burn-in 100% 168H = T5  
Burn-in 100% 48H = T3  
XD  
NP0  
F = ±1%  
G = ±2%  
J = ±5%  
07  
K = ±10%  
J = ±5%  
No burn-in  
= --  
X7R  
K = ±10%  
M = ±20%  
STYLE & DIMENSIONS  
millimeters (inches)  
L
Thickness  
TYPES  
L
P
D
d
bm maxi  
maxi  
P
D
XD07  
7.00 ± 0.15  
(0.275 ± 0.006)  
6.00 ± 0.15  
(0.236± 0.006)  
2.54  
1.70 ± 0.15  
1.00 ± 0.10  
0.3  
2mm  
(4 capacitors)  
(0.100) (0.067 ± 0.006) (0.039 ± 0.0039)  
2.54 1.70 ± 0.15 1.00 ± 0.10  
(0.100) (0.067 ± 0.006) (0.039 ± 0.0039)  
2.54 1.70 ± 0.15 1.0 ± 0.10  
L
P
XD06  
(4 capacitors)  
0.3  
2mm  
d
XD03  
6.00 x 3.00 ± 0.15  
0.3  
1.5mm  
bm  
tm  
(2 capacitors) (0.236 x 0.118 ± 0.006)  
(0.100) (0.067 ± 0.006) (0.039 ± 0.0039)  
Terminations: Silver – Palladium – Platinum, on 4 or only 2 sides of the array  
CAPACITANCE vs VOLTAGE TABLE  
Cap. Range  
(each cap.)  
X7R  
NP0  
200VDC  
500VDC  
200VDC  
500VDC  
XD07...  
XD06...  
XD03...  
33nF 120nF  
15nF 68nF  
8.2nF 39nF  
4.7nF 18nF  
2.2nF 10nF  
1nF 4.7nF  
470pF 1500pF  
220pF 750pF  
180pF 390pF  
220pF 620pF  
120pF 330pF  
82pF 180pF  
ELECTRICAL CHARACTERISTICS  
Dielectric Class  
X7R  
NP0  
0 ± 30ppm/°C  
Temperature Coefficient  
C/C ± 15% (-55 +125°C)  
Climatic Category  
55 / 125 / 56  
55 / 125 / 56  
Rated Voltage (UR)  
Test Voltage (Ue)  
Tangent of Loss Angle - DF  
Insulation Resistance  
200 VDC  
2 x UR  
500VDC  
1.5 x UR  
200VDC  
2 x UR  
tg δ 15(10-4)  
Ri 100 GΩ  
500VDC  
1.5 x UR  
tg δ 250(10-4)  
C 10nF = Ri 100 GΩ  
C > 10nF = Ri x C 1000s  
89  
CECC Ceramic Chips  
FEATURES  
High Reliability CECC Ceramic Chips Capacitors for Military & Avionics applications  
HOW TO ORDER  
AN  
13  
Z
E
0104  
J
T3  
AVX Style  
AN = Nickel Barrier  
+ SnPb finish  
AC = Silver Palladium 13 = 1210  
14 = 1812  
Size  
Class  
C = NP0  
Z = X7R  
Voltage  
D = 50/63  
E = 100  
Capacitance  
EIA code  
on 3 or 4  
digits  
Tolerance  
Packaging  
SUFFIX  
Burn-in 100% 168H = T5  
Burn-in 100% 48H = T3  
12 = 0805  
20 = 1206  
NP0  
F = ±1%  
G = ±2%  
J = ±5%  
F = 200  
K = ±10%  
J = ±5%  
No burn-in  
= --  
15 = 2220  
X7R  
K = ±10%  
M = ±20%  
QUALIFIED VS CECC 32101-801  
Class: NP0 + X7R (2C1/BX available on request)  
Sizes: 0805, 1206, 1210, 1812, 2220 (0603 qualification pending)  
Voltages: 50, 100, 200 (500V on request)  
Terminations: Silver Palladium or Nickel barrier + tin lead finish  
CAPACITANCE vs VOLTAGE TABLE  
Size  
NP0*  
100V  
X7R**  
50V  
200V  
50V  
100V  
200V  
0805  
1206  
1210  
1812  
2220  
4.7 1500pF  
10 4700pF  
10 8200pF  
0.1 18nF  
0.47 39nF  
4.7 1500pF  
10 4700pF  
10 8200pF  
0.1 18nF  
0.47 39nF  
10 470pF  
10 1500pF  
22 2700pF  
0.47 5.6nF  
0.1 12nF  
0.47 68nF  
1 180nF  
0.47 39nF  
1 100nF  
4.7 220nF  
10 470nF  
0.047 1µF  
0.33 18nF  
0.1 39nF  
0.47 100nF  
1 180nF  
10 330nF  
47 680nF  
0.1 1.5µF  
4.7 390nF  
* NP0 Class (range available with tolerance: 1, 2, 5, 10ꢀ)  
** X7R Class (range available with tolerance: 5, 10, 20ꢀ)  
Available Reliability Levels:  
Suffix: -- = qualified following CECC 32101-801 [no burn-in]  
Suffix: T3 = according to CECC 32100-002 or 003; Established reliability level  
(Equivalent to MIL-R) [100ꢀ burn-in: 48H @ 2 x Ur]  
Suffix: T5 = according to CECC 32100-002 or 003; Established reliability level  
(Equivalent to MIL-S) [100ꢀ burn-in: 168H @ 2 x Ur]  
90  
Baseline Management  
A Dedicated Facility / BS9100 Requirements  
Baseline Products —  
A Selection of Options  
markings or lead placement from the  
standard catalog part.  
Baseline Program Management  
Baseline Program Management has  
been AVXs forte over the years. This is  
both a product and a service function  
designed to provide the customer the  
full capabilities of AVX in meeting their  
program requirements. AVX has had  
Baseline and Program Management in  
the following major systems:  
As a matter of course, AVX maintains a  
level of quality control that is sufficient  
to guarantee whatever reliability specifi-  
cations are needed. However, AVX  
goes further. There are over 65 quality  
control and inspection operations that  
are available as options to a customer.  
Any number may be requested and  
written into a baseline process. The  
abbreviated list that follows indicates  
the breadth and thoroughness of avail-  
able Q.C. services at AVX:  
Stretching the Limits  
Advanced Products are developed to  
meet the extraordinary needs of specific  
applications. Requirements may include:  
low ESR, low ESL, voltages up to 10s  
of thousands, advanced decoupling  
designs for frequencies up to 10s of  
megahertz, temperatures up to 200°C,  
extremely high current discharge, ability  
to perform in high radiation or toxic  
atmospheres, or minimizing piezoelectric  
effect in high vibration environments.  
—AT&T Undersea Cable  
—Minuteman  
—Peacekeeper  
—STC Undersea Cable  
—CIT Undersea Cable  
—Raytheon-Hawk Missile  
Trident  
—Small Missile Program  
—Northrop - Peacekeeper  
—Sparrow Program  
—Space Station  
—European Space Agency (ESA)  
—Commercial Satellite Program  
—Arianne 4 & 5  
—EuroFighter (Typhoon)  
—EH101 (Merlin)  
Ultrasonic Scanning  
Destructive Physical Analysis (DPA)  
X-Ray  
Bondability Testing  
Sorting and Matching to  
Specification Limits  
Temperature and Immersion  
Cycling  
Load/Humidity Life Testing  
Dye Penetration Evaluation  
100% Ceramic Sheet Inspection  
Voltage Conditioning  
In addition, solving customer packaging  
problems, aside from addressing circuit  
problems, is available. Special lead  
frames for high current or special  
mounting requirements are examples.  
Multiple ceramic chip package designs  
per customer requirements are also  
available.  
Advanced Products always begin with  
a joint development program involving  
AVX and the customer. In undersea  
cable components, for example,  
capacitance and impedance ratings  
had to be maintained within 1% over  
the multi-year life of the system. In this  
case, Advanced Products not only  
met the parametric requirements of the  
customer, but accelerated life testing of  
3,500 units indicated an average life  
expectancy of over 100,000 years.  
AVX technical personnel stand ready to  
answer any questions and provide any  
information required on your programs  
from the most exotic Hi-Rel part to the  
simplest variation on a standard. Put the  
experience, technology and facilities of  
the leading company in multilayer  
ceramics to work for you. No other  
source offers the unique combination of  
capability and commitment to advanced  
application specific components.  
Termination Pull Testing  
Pre-encapsulation Inspection  
Within the “specials” area, AVX accom-  
modates a broad variety of customer  
needs. The AVX facilities are capable of  
developing and producing the most  
reliable and advanced MLCs available  
anywhere in the world today. Yet it is  
equally adept at making volume “custom”  
components that may differ only in  
PROCUREMENT OF COMPONENTS OF  
PACKAGING  
Unless otherwise stated in the appropriate data sheet parts  
are supplied in a waffle pack.  
BS9100 (CH/CV RANGE 50-500V)  
The manufacturing facilities have IS09001 approval. Customers  
requiring BS9100 approved components are requested to  
follow these steps:  
1. The customer shall submit a specification for the required  
components to AVX for approval. Once agreed a Customer  
Detail Specification (CDS) number will be allocated by AVX  
to this specification. This number with its current revision  
must be quoted at the time of order placement.  
2. If the customer has no specification, then AVX will supply a  
copy of the standard CDS for the customers approval and  
signature. As in 1 above, when agreed this CDS number  
must be quoted at order entry. In the event of agreement  
not being reached the component cannot be supplied to  
BS9100.  
For assistance contact: EMAP Specification Engineering  
Dept. AVX Ltd. Coleraine, Northern Ireland  
Telephone ++44 (0)28703 44188, Fax ++44 (0)28703 55527  
91  
Advanced Application  
Specific Products  
Examples of Special Packaging and Custom  
Lead Configurations from Advanced Products  
Custom Lead  
Configurations. . .  
optimum 3D packaging, high current  
applications and high reliability stress  
relief mounting.  
Custom  
Packaging. . .  
eliminate reliability concerns with multiple  
component assembly.  
Many other innovations are available from Advanced Products. Let them apply these ideas  
to your application specific programs.  
92  
AVX Products Listing  
PASSIVES  
CONNECTORS  
2mm Hard-Metric for CompactPCI®  
Automotive Connectors  
Capacitors  
Multilayer Ceramic  
Tantalum  
Filters  
EMI  
SAW  
Dielectric  
Board to Board Connectors –  
SMT and Through-Hole  
Card Edge  
Compression  
Custom Designed Connectors  
Customized Backpanel, Racking and  
Harnessing Services  
DIN 41612 Connectors  
FFC/FPC Connectors  
Insulation Displacement Connectors  
I/O Connectors  
Memory Card Connectors  
CF, PCMCIA, SD, MMC  
MOBOTM, I/O, Board to Board and  
Battery Connectors  
Press-fit Connectors  
Varicon®  
Wire to Board, Crimp or IDC  
Microwave  
Glass  
Film  
Power Film  
Power Ceramic  
Ceramic Disc  
Trimmer  
Thin Film  
Inductors  
Fuses  
Capacitors  
Couplers  
Baluns  
BestCap™  
Filters  
Resistors  
Integrated Passive  
Components  
Arrays  
Timing Devices  
Resonators  
Oscillators  
Low Inductance Chip Arrays  
Capacitor Arrays  
Dual Resonance Chips  
Custom IPCs  
Crystals  
Voltage Suppressors,  
Varistors and Thermistors  
Acoustical Piezos  
For more information please visit  
our website at  
http://www.avx.com  
NOTICE: Specifications are subject to change without notice. Contact your nearest AVX Sales Office for the latest specifications. All statements, information and data given  
herein are believed to be accurate and reliable, but are presented without guarantee, warranty, or responsibility of any kind, expressed or implied. Statements  
or suggestions concerning possible use of our products are made without representation or warranty that any such use is free of patent infringement and are not  
recommendations to infringe any patent. The user should not assume that all safety measures are indicated or that other measures may not be required. Specifications are  
typical and may not apply to all applications.  
© AVX Corporation  
93  
USA  
AVX Myrtle Beach, SC  
Corporate Offices  
AVX North Central, IN  
AVX Southwest, AZ  
Tel: 602-678-0384  
FAX: 602-678-0385  
AVX Southeast, GA  
Tel: 404-608-8151  
FAX: 770-972-0766  
Tel: 317-848-7153  
FAX: 317-844-9314  
Tel: 843-448-9411  
FAX: 843-448-1943  
AVX Mid/Pacific, CA  
Tel: 510-661-4100  
FAX: 510-661-4101  
AVX South Central, TX  
AVX Canada  
Tel: 905-238-3151  
FAX: 905-238-0319  
AVX Northwest, WA  
Tel: 360-699-8746  
FAX: 360-699-8751  
Tel: 972-669-1223  
FAX: 972-669-2090  
EUROPE  
AVX Limited, England  
AVX S.A., France  
Tel: ++33 (1) 69-18-46-00  
FAX: ++33 (1) 69-28-73-87  
AVX srl, Italy  
Tel: ++390 (0)2 614-571  
FAX: ++390 (0)2 614-2576  
European Headquarters  
Tel: ++44 (0) 1252-770000  
FAX: ++44 (0) 1252-770001  
AVX GmbH, Germany  
Tel: ++49 (0) 8131-9004-0  
FAX: ++49 (0) 8131-9004-44  
AVX Czech Republic  
Tel: ++420 465-358-111  
FAX: ++420 465-323-010  
AVX/ELCO, England  
Tel: ++44 (0) 1638-675000  
FAX: ++44 (0) 1638-675002  
ASIA-PACIFIC  
AVX/Kyocera, Singapore  
Asia-Pacific Headquarters  
AVX/Kyocera, Taiwan  
Tel: (886) 2-2698-8778  
FAX: (886) 2-2698-8777  
Kyocera, Japan - KDP  
Tel: (81) 75-604-3424  
FAX: (81) 75-604-3425  
Tel: (65) 6286-7555  
FAX: (65) 6488-9880  
AVX/Kyocera, Shanghai, China  
AVX/Kyocera, Malaysia  
AVX/Kyocera, Hong Kong  
Tel: 86-21 6341 0300  
FAX: 86-21 6341 0330  
Tel: (60) 4-228-1190  
FAX: (60) 4-228-1196  
Tel: (852) 2-363-3303  
FAX: (852) 2-765-8185  
AVX/Kyocera, Tianjin, China  
Elco, Japan  
Tel: 86-22 2576 0098  
FAX: 86-22 2576 0096  
Tel: 045-943-2906/7  
FAX: 045-943-2910  
AVX/Kyocera, Korea  
Tel: (82) 2-785-6504  
FAX: (82) 2-784-5411  
Kyocera, Japan - AVX  
Tel: (81) 75-604-3426  
FAX: (81) 75-604-3425  
Contact:  
A KYOCERA GROUP COMPANY  
http://www.avx.com  
S-AP0M0505-C  

相关型号:

XB04CD0100JMB

Feed Through Capacitor, 1 Function(s), 50V,

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
KYOCERA AVX

XB04CD0100KMB

Feed Through Capacitor, 1 Function(s), 50V,

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
KYOCERA AVX

XB04CD0100M--

Feed Through Capacitor, 1 Function(s), 50V,

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
KYOCERA AVX

XB04CD0100MMB

Feed Through Capacitor, 1 Function(s), 50V,

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
KYOCERA AVX

XB04CD0101J--

Feed Through Capacitor, 1 Function(s), 50V,

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
KYOCERA AVX

XB04CD0101JMB

Feed Through Capacitor, 1 Function(s), 50V,

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
KYOCERA AVX

XB04CD0101K--

Feed Through Capacitor, 1 Function(s), 50V,

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
KYOCERA AVX

XB04CD0101KMB

Feed Through Capacitor, 1 Function(s), 50V,

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
KYOCERA AVX

XB04CD0101MMB

Feed Through Capacitor, 1 Function(s), 50V,

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
KYOCERA AVX

XB04CD0102J--

Feed Through Capacitor, 1 Function(s), 50V,

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
KYOCERA AVX

XB04CD0102JMB

Feed Through Capacitor, 1 Function(s), 50V,

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
KYOCERA AVX

XB04CD0102K--

Feed Through Capacitor, 1 Function(s), 50V,

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
KYOCERA AVX